Compactness on the Subgroup Space of Rough Intuitionistic Fuzzy Structure

H.Jnnuade Immaculate1* and I.rakesh1

1 Department of Mathematics, Nirmala College for Women, Coimbatore, Tamil Nadu, India.

Mathlogix publications

Article Info

Received: 30-05-2025 Revised:08-06-2025 Accepted:19-06-2025 Published:29-06-2025

Abstract: In light of rough intuitionistic fuzzy sets, the purpose of this study is to introduce the concept of rough intuitionistic fuzzy compact subgroup, namely rough intuitionistic fuzzy extremal compact spaces. Using several topological ideas, we describe the subspace space of rough intuitionistic structure. We talk about a few of its qualities.

Keywords: Rough intuitionistic fuzzy compact subgroup, Rough intuitionistic fuzzy extremal compact spaces, Intuitionistic fuzzy sets.

1. Introduction

Pawlak [11] introduced rough set theory, a novel mathematical technique that facilitates uncertainty reasoning. It has been effectively used in a variety of domains, including machine learning, intelligent systems, inductive reasoning, pattern recognition, image processing, signal analysis, knowledge discovery, decision analysis, expert systems, and many more. It may be thought of as an extension of classical set theory. Zadeh [13] introduced the new idea of fuzzy set theory in 1965. Numerous mathematical structures, including topological spaces, groups, rings, and others, as well as ideas such relations measures, probability, and automata, have been tried to be fuzzified. In 1994, Biswas and Nanda [2] presented the notion of a rough ideal in a semigroup. In 1990, Dubois and Prade [5] developed an enhanced concept known as rough fuzzy sets by introducing the lower and upper approximations of fuzzy sets in Pawlak approximation space based on an equivalence relation. Rough prime ideals and rough fuzzy prime ideals in commutative rings were first presented by Kazanci and Davaaz [11] in 2008. Rough intuitionistic fuzzy sets in semigroups were recently developed by Jayanta Ghosh and T.K. Samantha [7]. The notion of intuitionistic fuzzy compact sets was first presented by Coker [3]. Rough intuitionistic fuzzy compact subgroups and rough intuitionistic fuzzy subgroup extremal compact space are defined in this study. There are existing properties that are of interest.

2. Preliminaries

Definition 2.1 ([1]). An intuitionistic fuzzy set (IFS in short) A in X is an object having the form $A = \{hx, \mu_A(x), v_A(x)/x \in Xi\}$ where the function $\mu: X \to [0,1]$ and $v: X \to [0,1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non membership (namely $v_A(x)$) of each element $x \in X$ to the set A, respectively and $0 \le \mu_A(x) + v_A(x) \le 1$ for each $x \in X$. Denote by IFS(X) the set of all intuitionistic fuzzy set in X.

Definition 2.2 ([1]). Let A and B be IFS's of the form $A = \{hx, \mu_A(x), v_A(x)/x \in Xi\}$ and $B = \{hx, \mu_B(x), v_B(x)/x \in Xi\}$. Then

- 1. $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$ for all $x \in X$.
- 2. A=B if and only if $A \subseteq B$ and $B \subseteq A$.

_

- 3. $A = \{hx, v_A(x), \mu_A(x)/x \in X_1\}$. (Complement of A)
- 4. $A \cap B = \{hx, \mu_A(x) \land \mu_B(x), v_A(x) \lor v_B(x)/x \in X_1\}.$
- 5. $A \cup B = \{hx, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x)/x \in X_1\}.$

For the sake of simplicity we use the notion $A = hx, \mu_A, v_A i$ instead of $A = \{hx, \mu_A(x), v_A(x)/x \in Xi\}$. The intuitionistic fuzzy set $0 \sim= \{hx, 0 \sim, 1 \sim i/x \in X\}$ and $1 \sim= \{hx, 1 \sim, 0 \sim i/x \in X\}$ are respectively the empty set and the whole set of X.

Note: For any IFS A in (X,τ) , we have cl(A) = int(A) and int(A) = cl(A).

Definition 2.3 ([7]). Let $A = (\mu_A, \nu_A)$ be an IFS in S and let $\alpha, \beta \in [0, 1]$ be such that $\alpha + \beta \leq 1$. Then the set

$$A_{\alpha,\beta} = \{x \in S | \mu_A(x) \ge \alpha, \nu_A(x) \le \beta\}$$

is called a (α,β) -level subset of A. The set of all $(\alpha,\beta) \in Im(\mu_A) \times Im(\nu_A)$ such that $\alpha + \beta \leq 1$ is called the image of A denoted by Im(A)

Definition 2.4 ([7]). Let θ be a congruence relation on G that is θ is an equivalence relation on G such that

$$(a,b) \in \theta \Rightarrow (ax,bx) \in \theta$$
 and $(xa,xb) \in \theta$ for all $x \in S$.

For a congruence relation θ on S, we have $[a]_{\theta}[b]_{\theta} \subseteq [ab]_{\theta}$ for all $a,b \in S$, where $[a]_{\theta}$ denotes θ -congruence class containing the element $a \in S$. A congruence relation θ on S is called complete if $[a]_{\theta}[b]_{\theta} = [ab]_{\theta}$ for all $a,b \in S$. Let us consider θ to be a congruence relation of S. If X is a nonempty subset of S then the sets $\theta_*(X) = x \in S[[x]_{\theta} \subseteq X$ and $\theta^*(X) = x \in S[[x]_{\theta} \cap X \in G]$ are respectively called the θ - lower and θ - upper approximation sof the set X and $\theta(X) = (\theta_*(X), \theta^*(X))$ is called rough set with respect to θ if $\theta_*(X)$ $\delta = \theta^*(X)$. If $A = (\mu_A, \nu_A)$ be IFS of S. Then the IFS $\theta_*(A) = (\theta_*(\mu_A), \theta_*(\nu_A))$ and $\theta^*(A) = (\theta^*(\mu_A), \theta^*(\nu_A))$ are respectively called θ -lower and θ -upper approximation of the IFS $A = (\mu_A, \nu_A)$ where for all $x \in S$

$$\theta * (\mu A)(x) = \Lambda a \in [x] \theta \mu A(a), \theta * (vA)(x) = \forall a \in [x] \theta v A(a)$$

$$\theta*(\mu A)(x) = \forall a \in [x]\theta\mu A(a), \theta*(\nu A)(x) = \land a \in [x]\theta\nu A(a)$$

For an IFS $A = (\mu_A, \nu_A)$ of S, $\theta(A) = (\theta_*(A), \theta^*(A))$ is called rough intuitionistic fuzzy set with respect to θ if $\theta_*(A) \in \theta^*(A)$.

3. Rough Intuitionistic Fuzzy Compact Structure Subgroup Space

Throughout this paper G denotes a group.

Definition 3.1. Let θ be a congruence relation on G. An rough intuitionistic fuzzy set A of G is called upper rough intuitionistic fuzzy subgroup of G if $\theta^*(A)$ is an rough intuitionistic fuzzy subgroup of G.(i.e)

(i).
$$\theta^*(\mu_A)(xy) \le \theta^*\mu_A(x) \wedge \theta^*\mu_A(y)$$

(ii).
$$\theta^*(A)(x^{-1}) = \theta^*(A)(x)$$

Definition 3.2. Let θ be a congruence relation on G. A rough intuitionistic fuzzy set A of G is called lower rough intuitionistic fuzzy subgroup of G if $\theta_*(A)$ is an rough intuitionistic fuzzy subgroup of G.(i.e)

(i).
$$\theta_*(\mu_A)(xy) \leq \theta_*\mu_A(x) \wedge \theta_*\mu_A(y)$$

(ii).
$$\theta_*(A)(x^{-1}) = \theta_*(A)(x)$$

Definition 3.3. If $\theta^*(A)$ and $\theta_*(A)$ are both intuitionistic fuzzy subgroup of G then A is called a rough intuitionistic fuzzy subgroup of G.

Example 3.4. Let $G = \{1, \omega, \omega^2\}$ where ω is the cubic root of unity with the binary operation which is defined as below

	1	ω	ω2
1	1	ω	ω2
ω	ω	ω2	1
ω2	ω2	1	ω

Let θ be a congruence relation on G such that the θ -congruence classes are the subsets $\{1\}$, $\{\omega, \omega^2\}$. Let $A = \{hx, \mu_A(x), \nu_A(x)i/x\}$ $\in G\}$ be an intuitionistic fuzzy subset of G defined by $A = \{\langle 1, 0.5, 0.4 \rangle, \langle \omega, 0.4, 0.4 \rangle, \langle \omega^2, 0.5, 0.4 \rangle\}$.

Since for every
$$x \in G$$
, $\theta^*(\mu_A(x)) = V_{a \in [x]}\theta\mu_A(a)$ and $\theta^*(v_A(x)) = \Lambda_{a \in [x]}\theta\nu_A(a)$ so the upper approximation is $\theta^*(A) = \{hx, \theta^*(\mu_A(x)), \theta^*(\nu_A(x))\} / (x \in G) \}$ is given by $\theta^*(A) = \{\langle 1, 0.5, 0.4 \rangle, \langle \omega, 0.5, 0.4 \rangle, \langle \omega^2, 0.5, 0.4 \rangle\}$ and since

for every $x \in G$, $\theta_*(\mu_A)(x) = \bigwedge_{a \in [x]} \theta \mu_A(a)$ and $\theta_*(v_A)(x) = \bigvee_{a \in [x]} \theta v_A(a)$ so the lower approximation is $\theta_*(A) = \{ hx, \theta_*(\mu_A(x)), \theta_*(v_A(x)) | x \in G \}$ is given by $\theta_*(A) = \{ \langle 1, 0.5, 0.4 \rangle, \langle \omega, 0.4, 0.4 \rangle, \langle \omega^2, 0.4, 0.4 \rangle \}$. Then it can be easily verified that

(i).
$$\theta^*(\mu_A)(xy) \ge \theta^*(\mu_A)(y) \ \theta^*(\nu_A)(xy) \le \theta^*(\nu_A)(y)$$

(ii).
$$\theta_*(\mu_A)(xy) \ge \theta_*(\mu_A)(y) \ \theta_*(\nu_A)(xy) \le \theta_*(\nu_A)(y)$$

Also it can be verified that

(i).
$$\theta^*(\mu_A)(x^{-1}) = \theta^*(\mu_A)(x) \ \theta^*(v_A)(x^{-1}) = \theta^*(v_A)(x)$$

(ii).
$$\theta_*(\mu_A)(x^{-1}) = \theta_*(\mu_A)(x) \ \theta_*(v_A)(x^{-1}) = \theta_*(v_A)(x)$$

Definition 3.5. Let (G,=) be any intuitionistic fuzzy rough structure group space and A be a rough intuitionistic fuzzy subgroup in G. Then A is said to be a rough intuitionistic fuzzy rough compact subgroup in (G,=) if for every family of $\{A_i|i\in J\}$ of rough intuitionistic fuzzy open subgroups in (G,=) satisfies the condition $A\subseteq \bigcup_{i\in J}A_i$, there exists a finite subfamily $J_0=\{1,...,n\}\subseteq J$ such that $A\subseteq \bigcup_{i=1}^n A_i$. The complement of a rough intuitionistic fuzzy compact group in

(G,=) is a rough intuitionistic fuzzy closed compact subgroup in (G,=).

Definition 3.6. Let G be a group. A family of a rough intuitionistic fuzzy subgroup in G is said to be a rough intuitionistic fuzzy structure subgroup on G if it satisfies the following axioms (i). $0 \sim 1 \sim 0$.

- (ii). finite intersection of elements of = is in =.
- (iii). arbitrary union of elements of = is in =.

Then the ordered pair (G,=) is called an rough intuitionistic fuzzy structure subgroup space.

Every member of = is called an rough intuitionistic fuzzy open subgroup in (G,=). The complement of a rough intuitionistic fuzzy open subgroup in (G,=) is a rough intuitionistic fuzzy closed subgroup in (G,=). Notation 3.7. Let (G,=) be any rough intuitionistic fuzzy structure subgroup space. Then (i). O(SG) denotes the family of all rough intuitionistic fuzzy open subgroup in (G,=).

(ii). C(SG) denotes the family of all rough intuitionistic fuzzy closed subgroup in (G,=)

Definition 3.8. Let (G,=) be a rough intuitionistic fuzzy structure subgroup space. Let $A = hx, \mu_A, \nu_A$ i be an intuitionistic fuzzy subgroup in G. Then

(i). the rough intuitionistic fuzzy subgroup interior of A is defined and denoted as

$$RIF_{SG}int(A) = \{ B = hx, \mu_B, \nu_B i/B \in O(SG) \text{ and } B \subseteq A \}$$

(ii). the rough intuitionistic fuzzy subgroup closure of A is defined and denoted as

$$RIF_{SG}cl(A) = {} {B = hx, \mu_B, \nu_B i/B \in C(SG) and B \supseteq A}$$

Remark 3.9. Let (G,=) be any rough intuitionstic fuzzy structure subgroup space. Let A = hx, μ_A , v_A i be any rough intuitionistic fuzzy subgroup in G. Then the following statements hold:

(i). $RIF_{SG}cl(A) = A$ if and only if A is an rough intuitionistic fuzzy closed subgroup. (ii).

 $RIF_{SG}int(A) = A$ if and only if A is an rough intuitionistic fuzzy open subgroup.

- (iii). $RIF_{SG}int(A) \subseteq A \subseteq RIF_{SG}cl(A)$.
- (iv). $RIF_{SG}int(1 \sim) = 1 \sim and RIF_{SG}int(0 \sim) = 0 \sim$.
- (v). $RIF_{SG}cl(1 \sim) = 1 \sim and RIF_{SG}cl(0 \sim) = 0 \sim$.

(vi). $RIF_{SG}cl(A) = RIF_{SG}int(A)$ and $RIF_{SG}int(A) = RIF_{SG}cl(A)$.

Definition 3.10. Let (G,=) be a rough intuitionistic fuzzy rough structure subgroup space

- (i). If a family $\{hx, \mu_{Gi}, v_{Gi} : i \in J\}$ of rough intuitionistic fuzzy open subgroups in G satisfies the condition S $\{hx, \mu_{Gi}, v_{Gi} : i \in J\} = 1 \sim$, then it is called a rough intuitionistic fuzzy open cover of G. A finite subfamily of a rough intuitionistic fuzzy open cover of G is called a finite subcover of $\{hx, \mu_{Gi}, v_{Gi} : i \in J\}$. A finite subfamily of a rough fuzzy open subgroup cover $\{hx, \mu_{Gi}, v_{Gi} : i \in J\}$ which is also a fuzzy open subgroup cover of G is called a finite subgroup subcover of $\{hx, \mu_{Gi}, v_{Gi} : i \in J\}$
- (ii). A family $\{hx, \mu_{Ki}, v_{Ki}i : i \in J\}$ of rough intuitionistic fuzzy rough closed subgroup in G satisfies the finite intersection property if and only if every finite subfamily $\{hx, \mu_{Ki}, v_{Ki}i : i = 1, 2,n\}$ of the family satisfies the condition $\bigcup_{i=1}^{n} \{\langle x, \mu_{K_i}, \nu_{K_i} \rangle\} \neq 0 \sim$

Definition 3.11. Let (G,=) be any rough intuitionistic fuzzy structure group space and A be an rough intuitionistic fuzzy subgroup in G. Then A is said to be a intuitionistic fuzzy rough open compact subgroup in (G,=) if it is both rough intuitionistic fuzzy open and rough intuitionistic fuzzy compact.

The complement of rough intuitionistic fuzzy compact subgroup in (G,=) is a rough intuitionistic fuzzy closed compact subgroup in (G,=).

Notation 3.12. Let (G, =) be any rough intuitionistic fuzzy structure subgroup space. Then

- (i). SG(OC) denotes the collection of all rough intuitionistic fuzzy open compact subgroups in (G,=).
- (ii). SG(CCmpt) denotes the collection of all rough intuitionistic fuzzy closed compact subgroups in (G,=).

Definition 3.13. Let (G,=) be any rough intuitionistic fuzzy structure subgroup space. Let $A = hx, \mu_A, v_A i$ be a rough intuitionistic fuzzy subgroup in G. Then

(i). the rough intuitionistic fuzzy compact SG-interior of A is defined and denoted by

$$RIFC_{SG}int(A) = [\{B = hx, \mu_B, v_A i/B \in SG(OC) and B \subseteq A\}.$$

(ii). the rough intuitionistic fuzzy compact SG-closure of A is defined and denoted by

$$RIFC_{SG}cl(A) = \{B = hx, \mu_B, v_A i/B \in SG(CCmpt) \text{ and } B \supseteq A\}.$$

Theorem 3.14. Let (G,=) be any rough intuitionistic fuzzy structure group space. Let $A = hx, \mu_A, v_Ai$ be a rough intuitionistic fuzzy subgroup in G. Then the following statement holds:

(i). $RIFC_{SGC}(A) = A$ if and only if A is a rough intuitionistic fuzzy closed compact subgroup. (ii).

 $RIFC_{SG}int(A) = A$ if and only if A is a rough intuitionistic fuzzy open compact subgroup.

(iii). $RIFC_{SG}int(A) \subseteq A \subseteq RIFC_{SG}cl(A)$.

(iv).
$$RIFC_{SG}cl(A) = RIFC_{SG}int(A)$$
 and $RIFC_{SG}int(A) = RIFC_{SG}cl(A)$.

(v).
$$RIFC_{SG}cl(0 \sim) = 0 \sim and RIFC_{SG}int(1 \sim) = 1 \sim$$
.

(vi).
$$RIFC_{SG}cl(1 \sim) = 1 \sim and RIFC_{SG}int(0 \sim) = 0 \sim$$
.

Definition 3.15. Let (G,=) be any rough intuitionistic fuzzy subgroup space. Then (G,=) is called a rough intuitionistic fuzzy subgroup extremal compact space if the rough intuitionistic fuzzy SG-closure of every rough intuitionistic fuzzy open compact subgroup is an rough intuitionistic fuzzy open compact subgroup.

Proposition 3.16. Let (G,=) be any rough intuitinistic fuzzy structure subgroup space. Then the following are equivalent:

- (i). (G,=) is a rough intuitionistic fuzzy subgroup extremal compact space.
- (ii). For each rough intuitionistic fuzzy closed compact subgroup A, $RIF_{SG}int(A)$ is a rough intuitionistic fuzzy closed compact subgroup.
- (iii). For each rough intuitionistic fuzzy open compact subgroup A, we have $RIFC_{SG}cl(RIFC_{SG}cl(A)) = RIFC_{SG}cl(A)$.
- (iv). For every pair of rough intuitionistic fuzzy compact subgroup A and B with $RIF_{SG}cl(A) = B$, we have $RIFC_{SG}cl(B) = \frac{1}{RIFC_{SG}cl(A)}$.

Proof. (i) \Rightarrow (ii) Let A be a rough intuitionistic fuzzy closed compact subgoup in (G,=). Then A is a rough intuitionistic fuzzy open compact subgroup in (G,=). Then by assumption, $RIFC_{SG}cl(A)$ is a rough intuitionistic fuzzy open compact subgroup in (G,=). Now $RIFC_{SG}cl(A) = RIFC_{SG}int(A)$. Therefore $RIFC_{SG}int(A)$ is a rough intuitionistic fuzzy closed compact subgroup in (G,=).

(ii) \Rightarrow (iii) Let A be a rough intuitionistic fuzzy open compact subgroup in (G,=). Then A is a rough intuitionistic fuzzy closed compact group in (G,=). By assumption $RIFC_{SG}int(A) = RIF_{SG}cl(A)$ is a rough intuitionistic fuzzy closed compact subgroup in (G,=).

Now $RIFC_{SG}cl(RIFC_{SG}cl(A)) = RIFC_{SG}cl(A)$.

(iii) \Rightarrow (iv) Let A and B be any rough intuitionistic fuzzy open compact subgroup in (G,=) such that $RIFC_{SG}cl(A) = B$. By (iii)

$$RIFC_{SG}cl(RIFC_{SG}cl(A)) = RIFC_{SG}cl(A)$$

$$\Rightarrow RIFC_{SG}cl(B) = RIFC_{SG}cl(A)$$

(iv) \Rightarrow (i) Let A and B be any two rough intuitionistic fuzzy compact subgroup in (G,=) such that $RIFC_{SG}cl(A) = B$.

By (iv)it follows that $RIFC_{SG}cl(B) = RIFC_{SG}cl(A)$. That is $RIFC_{SG}cl(A)$ is a rough intuitionistic fuzzy closed compact subgroup in (G,=). This implies that $RIFC_{SG}cl(A)$ is a rough intuitionistic fuzzy open compact subgroup in (G,=). Hence (G,=) is a rough intuitionistic fuzzy subgroup extremal compact space. \square

Proposition 3.17. Let (G,=) be any rough intutionistic fuzzy rough intuitinistic fuzzy subgroup space. Then (G,=) is an intuitionistic fuzzy subgroup extremal compact space if and only if for each rough intuitionistic fuzzy open compact subgroup A and rough intuitionistic fuzzy closed compact subgroup B such that $A \subseteq B$, $RIFC_{SG}$ cl $(A) \subseteq RIFC_{SG}$ int(A)

Proof. Let A be a rough intuitionistic fuzzy compact subgroup and B be a rough intuitionistic fuzzy closed compact subgroup in (G,=) such that $A \subseteq B$. Then by (ii) of Proposition 3.14 $RIFC_{SG}int(B)$ is a rough intuitionistic fuzzy closed compact subgroup in (G,=). Therefore $RIFC_{SG}cl(RIFC_{SG}(int(B))) = RIFC_{SG}int(B)$. Since A is a rough intuitionistic fuzzy open compact group and $A \subseteq B$, $A \subseteq RIFC_{SG}int(B)$. Now $RIFC_{SG}cl(A) \subseteq RIFC_{SG}int(B) = RIFC_{SG}int(B)$.

Conversely, let B be a rough intuitionistic fuzzy closed compact subgroup in (G,=). Then $RIFC_{SG}int(B)$ is a rough intuitionistic fuzzy open compact subgroup in (G,=) and $RIFC_{SG}int(B) \subseteq B$. By assumption $RIFC_{SG}cl(A(RIFC_{SG}int(B))) \subseteq RIFC_{SG}int(B)$. Also $RIFC_{SG}int(B) \subseteq RIFC_{SG}int(B)$. This implies $RIFC_{SG}cl(RIFC_{SG}int(B)) =$

 $RIFC_{SG}int(B)$. Thus $RIFC_{SG}int(B)$ is a rough intuitionistic fuzzy closed cmmpt-compact subgroup in (G,=). By (ii) of Proposition 3.13 (G,=) is a rough intuitionistic fuzzy subgroup extremal compact space. \Box

Definition 3.18. Let (G,=) be any rough intuitionistic fuzzy structure subgroup space. A rough intuitionistic fuzzy subgroup A in (G,=) is said to be an RIFC co subgroup in (G,=) if it is both rough intuitionistic fuzzy open compact and rough intuitionistic fuzzy closed compact

Remark 3.19. Let (G, =) be any rough intuitionisitic fuzzy extremal compact space. Let $\{A_i, B_i | i \in N\}$ be a collection such that A^0 is are rough intuitionistic fuzzy open compact subgroup and B_i^0 s are rough intuitionistic fuzzy closed compact subgroup and let A and B be any two rough intuitionistic fuzzy co subgroup. If $A_i \subseteq A \subseteq B_j$ and $A_i \subseteq B \subseteq B_j$ for all $i,j \in N$ then there exists a RIFC co subgroup C such that $RIFC_{SG}$ cl $(A_i) \subseteq C \subseteq RIFC_{SG}$ int (B_j) for all $i,j \in N$. By Proposition 3.13 $RIFC_{SG}$ cl $(A_i) \subseteq RIFC_{SG}$ cl $(A) \cap RIFC_{SG}$ int $(B) \subseteq RIFC_{SG}$ int (B_j) for all $i,j \in N$. Therefore, $C = RIFC_{SG}$ cl $(A) \cap RIFC_{SG}$ int(B) is a RIFC co subgroup in (G, =) satisfying the required condition.

Note *RIFC*(*SG*) denotes the collection of all rough intuitionistic fuzzy subgroup in G.

Proposition 3.20. Let (G,=) be any rough intuitionistic fuzzy subgroup extremal compact space. Let $\{A_q\}_{q\in Q}$ and $\{B_q\}_{q\in Q}(Q)$ set of all rational numbers) be monotonic increasing collection of rough intuitionistic fuzzy open compact subgroup and rough intuitionistic fuzzy closed compact subgroup of (G,=) respectively and suppose that $A_{q1} \subseteq Bq_2$ whenever $q_1 \le q_2$ Then there exists a monotone increasing collection $\{C_q\}_{q\in Q}$ of rough intuitionistic fuzzy co subgroup of (G,=) such that $RIFC_{Sg}cl(A_{q1}) \subseteq C_{q2}$ and $C_{q1} \subseteq RIFC_{SG}int(B_{q2})$ whenever $q_1 < q_2$.

Proof. Let us arrange all rational numbers into a sequence $\{q_n\}$ without repetitions. for every $n \ge 2$, we shall define inductively a collection $\{C_{qi}/1 \le i \le n\} \subseteq RIFC(G)$ of rough intuitioistic fuzzy co subgroup such that

$$RIFC_{SG}cl(A_q) \subseteq C_{qi}ifq < q_i, C_{qi} \subseteq RIFC_{SG}int(B_q)$$

if $q_i < q$ for all i < n.

The countable collection $\{RIFC_{SG}cl(A_q)\}$ and $\{RIFC_{SG}int(B_q)\}$ satisfy $RIFC_{SG}cl(A_{q1}) \subseteq RIFC_{SG}int(B_{q2})$ if $q_1 < q_2$. By remark 3.17 there exists a rough intuitionistic fuzzy co subgroup D_1 such that $RIFC_{SG}cl(A_{q1}) \subseteq D_1 \subseteq RIFC_{SG}int(B_{q2})$. Letting $C_{q1} = D$ we get S_2 . Assume that the rough intuitionistic fuzzy subgroup C_{q1} are already defined for i < n and satisfy (S_n) . Define $E = \bigcup \{C_{qi}/i < n, q_i < q_n\} \cup A_{qn}$. $F = \bigcap \{C_{qi}/j < n, q_j > q_n\} \cap B_{qn}$. Then we have $RIFC_{SG}cl(C_{qi}) \subseteq RIFC_{SG}cl(E) \subseteq RIFC_{SG}int(C_{qj})$ and $RIFC_{SG}cl(C_{qi}) \subseteq RIFC_{SG}int(F) \subseteq RIFC_{SG}int(C_{qj})$ whenever $q_i < q_n < q_j(i,j < n)$ as well as $A_q \subseteq RIFC_{SG}cl(E) \subseteq B_{qi}$ and $A_q \subseteq RIFC_{SG}int(F) \subseteq B_{qi}$ whenever $q < q_n < q_1$. This shows that the contable collections $\{C_{qi}/i < n, q_i < q_n\} \cup \{A_{q}/q < q_n\}$ and $\{C_{qi}/j < n, q_j > q_n\} \cup B_{q}/q > q_n\}$ together with E and F full fill the condition of remark. Hence there exists a rough intuitionistic fuzzy co subgroup D_n such that

 $RIFC_{SG}cl(D_n) \subseteq B_q$ if $q_n < q_i A_q \subseteq RIFC_{SG}int(D_n)$ if $q < q_n$. $RIFC_{SG}cl(C_{qi}) \subseteq RIFC_{SG}int(D_n)$ if $q_i < q_n$ and $RIFC_{SG}cl(D_n) \subseteq RIFC_{SG}int(C_{qi})$ if $q_n < q_j$ where $1 \le i,j \le n-1$. Setting $C_{qn} = D_n$ we obtain a rough intuitionistic fuzzy subgroup $C_{q1}, C_{q2}, ..., C_{qn}$ that satisfy (S_{n+1}) . Therefore the collection $\{C_{qi}1 = 1,2,\}$ the required property. \square

Definition 3.21. Let (G,=) be any rough intuitionistic fuzzy structure subgroup space. Let $A = hx, \mu_A, v_A$ i and $B = hx, \mu_B, v_B$ i be any two rough intuitionistic fuzzy rough subgroup in G. Then A is a rough intuitionistic fuzzy subgroup quasicoincident with B(AqB) if there is a $x \in G$ such that $\mu_A(x) + \mu_B(x) > 1$ and $v_A(x) + v_B(x) < 1$. Otherwise A is not a rough intuitionistic fuzzy subgroup quasi-coincident with $B(AqB^{\sim})$

Proposition 3.22. Let (G,=) be any rough intuitionistic fuzzy structure subgroup space. Then (G,=) is a rough intuitionistic fuzzy subgroup extremal compact space if and only if every rough intuitionistic fuzzy open compact subgroup $A = hx, \mu_A, v_A i$ and $B = hx, \mu_B, v_B i$ with AqB^{\sim} ,

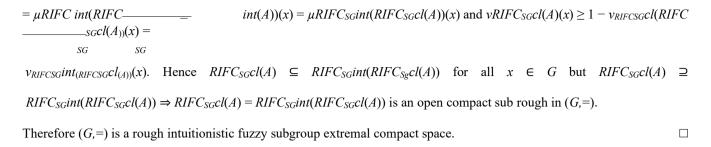
$$RIFC_{SG}cl(A)qRIFC^{\sim}_{SG}cl(B)$$
.

Proof. Let $A = hx, \mu_A, v_A i$ and $B = hx, \mu_B, v_B i$ be any two rough intuitionistic fuzzy open compact subgroup with AqB^{\sim} . Since (G,=) is a rough intuitionistic fuzzy subgroup extremal compact space $RIFC_{SG}cl(A)$ and $RIFC_{SG}cl(B)$ are rough intuitionistic fuzzy open compact subgroups. Hence $RIFC_{SG}cl(A)qRIFC^{\sim}_{SG}cl(B)$.

Conversely let A be a rough intuitionistic fuzzy open compact group and $RIFC_{SG}cl(A)$ be an intuitionistic fuzzy open compact subgroup in (G,=) such that $Aq^*RIFC_{SG}cl(A)$. Then by hypothesis $RIFC_{SG}cl(A)qRIFC^*$ $_{SG}cl(RIFC_{SG}cl(A))$. That is for all $x \in G\mu RIFC_{SG}cl(A)(x)+\mu RIFC_{SG}cl(RIFC_{SG}cl(A))(x) \le 1$

$$\Rightarrow \mu_{RIFC_{SG}cl(A)}(x) \le 1 - \mu_{RIFC_{SG}cl(\overline{RIFC_{SG}cl(A)})}(x)$$

 $^{=1-\}mu_{RIFC_{SG}cl(RIFC_{SG}int(\overline{A}))}(x)$



References

- [1] Intuitionistic fuzzy sets, by K.T. Atanassov, Fuzzy Sets and Systems, 20(1986), 87-96.
- [2] Rough groups and rough subgroups, Bull.Polish Acad.Sci.Math., 42(1994), 251-254, R. Biswas and S. Nanda.
- [3] On Fuzzy Compactness intuitionistic fuzzy topological spaces, D. Coker and A.H. Es, J.Fuzzy Math, 3(1996), 899-909.
- [4] Dogan Coker, fuzzy Sets and Systems, 88(1997), 81-89, An Introduction to Intuitionistic Fuzzy Topological Spaces.
- [5] Int. J. Gen. Syst. 17(1990), 191-209, D. Dubois and H. Prade, Rough fuzzy sets and fuzzy rough sets.
- [6] Rough intuitionistic fuzzy sets in semigroups, by Jayantha Ghosh and T.K. Santa, Ann.Math.Inform., 4(1)(2012), 155-168.
- [7] Rough intuitionistic fuzzy ideals in semigroups, by Jayantha Ghosh and T.K. Samanta, Ann.Math.Inform., 5(1)(2013), 25–34.
- [8] Rajesh Kumar, Redefining Some Fuzzy Ring Ideals, Fuzzy Sets and Systems, 46(1992), 251-260. [9] Kuroki, Semigroup rough ideals, Inform. Sci., 100(1997), 139-163. [10] Intuitionistic fuzzy ideals of semigroups, K.H. Kim and Y.B. Jun, Indian J. Pure Appl. Math., 33(4)(2002), 443-449. On the construction of rough prime (primary) ideals and rough fuzzy prime (primary) ideals in commutative rings, Osman Kazanci and B. Davvaz, Inform. Sci., 178(2008), 1343-1345 [11]. Rough sets, Int. J. Inf. Comp.Sci., 11(1982), 341-356, Z. Pawlak [12]. [13] L.A. Zadeh, Information and Control, 8(1965), 338-353, Fuzzy sets.