International Journal of Mathematical Modelling and Computation
Vol 1, Issue 1 2025
The Klein-Gorden Equation's Numerical Solution Using Nonstandard
Finite Difference

S. Shankar and R. uma®

a5School of Mathematics, Iran University of Science and Technology, Narmak, Tehran
1684613114, Iran.

Article Info

Received: 30-04-2025 Revised:08-05-2025 Accepted:19-05-2025  Published:29-05-2025

Abstract. We provide a numerical method in this study to solve the one-dimensional
nonlinear Klein-Gorden problem. We provide a detailed description of the
mathematical formulation process. The technique is based on nonstandard finite
differences and is explicit at three levels. The step sizes' denominator function is
nonlinear. We have provided a stability study of the approach and shown its
unconditional stability when applied to the one-dimensional nonlinear Klein-Gorden
problem. We use the suggested strategy to two cases to demonstrate its utility.
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1. Introduction

Many nonlinear phenomena are modeled by nonlinear Klein-Gorden equation, such as
dislocations, ferroelectric and ferromagnetic domain wall. The numerical treatment of one
dimensional Klein-Gorden equation

Uy — @+ g(u) = fx, 1) x € (Lo,L1) t> to, (1)

u(x,t0) = $(x), ux, to) = y(x), x € (Lo.L1) @)

and with the boundary conditions

u(Lo,2) = po(2), u(L,2) = pi(2), 1>t 3)
has been considered, where u = u(x,?) represents the wave displacement at position x and time #,a
is an known constant and g(u) is the nonlinear force. The function ¢(x) and w(x) are wave modes
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or kinks and velocity,respectively. When the nonlinear force is given by g(u) = sin(u) then, the
equation (1) is known as Sin-Gorden equation.

The Klein-Gorden equation plays an important role in mathematical physics [21,4,8]. There are
a lot of studies on the numerical solution of initial-boundary value problem of the linear and
nonlinear Klein-Gorden equation. El-Sayed [9] and Wazwaz et al. [10,22] and Kaya et al. [14] have
used Adomian decomposition method for solving linear and nonlinear Klein-Gorden equation.
Parkes et al. [18] and Fu et al. [11] used the Jacobi elliptic function expansion method to find
double periodic solutions of equation (1). Finite difference methods are known as the first
technique for solving such equation. These methods are very effective for solving various kinds of
partial differential equations, conditionally stability of explicit finite difference procedures is
developed by Dehghan [6]. Jiminez et al. [13] were discussed fourth order finite difference scheme
for approximation the nonlinear Klein-Gorden equation. Bratsos [3] used a predictor-corrector (P-
C) scheme based on rational approximation of second order three-time level recurrence relations.
Abbasbandy [1] obtained numerical solution of nonlinear Klein-Gorden equation by variational
iteration method. Ismail et al. [12] were consider spline difference method for solving Klein-
Gorden equation.

Yusufoglu [23] presented variational iteration method for studying Klein-Gorden equation.
Dehghan et al. [7] proposed a numerical scheme to solve Klein-Gorden equation by using the
collocation approximation solution based on Thin Plate Spline (TPS) radial basis functions (RBF).
Rashidinia et al. [19] developed a three time level implicit method by using the non-polynomial
cubic tension spline function for solving Klein-Gorden equation.

The use of the nonstandard finite difference method has increased in recent years. For example,
Areanas et al. [2] constructed nonstandard finite difference schemes to obtain numerical solutions
of the susceptible-infected (SI) and susceptible-infectedrecovered (SIR) fractional-order epidemic
models. Also, Memarbashi et al. [15] developed these method for solving (SEI) Epidemic Model.
Dang [5] proposed nonstandard finite difference schemes for a general predator-prey system. In
these paper, we will discuss nonstandard finite difference for solving Klein-Gorden equation.

This article organized as following: In section 2, we define nonstandard finite difference
preliminaries. In section 3, we present the subequation method which is the basic tool in driving
the nonstandard finite difference scheme. In this section, we discuss the application of proposed
method to equation (1). In next section, stability analysis has been carried out. In section 5, we
illustrate two examples for the efficiency of the proposed method and compare it with standard
finite difference schemes. Concluding remarks are given in section 6.

2. Preliminaries [17]

2.1 Exact finite difference scheme
Consider the following equation

du

= Flnt,N), ulto) = uo

, 4)

where A is a set of parameters and f{i,1,4) is such that Eq. 4 has a unique solution over, o< ¢ < T.
We denote the solution of (4) by

u(t) = O(4,uo, to, 1), Q)

with ug= (I)()L,uo, to, 1).
The discrete model of Eq. (4) can be written as

up1 = g(A k), (6)
where k = At and ¢, = jk.

Definition 2.1 Equation (4) and (6) are said to have the same general solution if and only if
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ui=u(t)), (7

for arbitrary values of .

Definition 2.2 An exact finite difference scheme is one for which the solution to the difference
equation has the same general solution as the associated differential equation.

Theorem 2.1 The Eq. (4) has an exact finite difference scheme given by
U1 = LA, uj4;,t1], (8)

where @ is given by (5).
Proof [17]. ]

Let u¥(¢);i = 1,2,...,N; be the set of linearly independent functions. It is possible to construct an
G0 — (@) (4,

N-th order linear difference equation that has the correspoding discrete functions,s = (ti’)
as the solutions for ¢;= (Af)j = jk, the required equation is given by the following determinante [16].

1 N
U uM o uf, :
U4 u b "U(N)
R e B
. .. = 0
, (1) )
UWitN Ujpn - Yienl 9)

To illustrate this procedure, consider the following second order ordinary differential equation

d?u
¢u +au=20

dt? (10)

wj iVakj o—ivakj
U1 €VARGTD) =ivakGHD | = g

Uj 1 1
civaki ,—ivakj Wit eiVak o—ivak | _
Wito e2ivak o—2i/ak
where a is a real constant. The two linearly independent solutions are

u(1)(®) = eiNat, u2)(t) = e—iVat. (n

Substitution of these function into Eq. (9) gives

(12)
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therefore,

(13)
Evaluation of the determinant
uj(e—iNak — eiNak) + (14)
uj+1(—e—2i\/ak + e2iNak) + uj+2(e—i\/ak — eiNak) =0.
and j — j — 1,we have
_ (15)
up1 — [2cos(iNa)|uj+ u—~1 = 0.
Using the identity
o ky/a
2 cos(kv/a) = 2 — 4sin’( f)
then Eq. (14) can be written in the form
Ujr] — 2Uj + Uj—
P fau; =0
(2)sin™(=7) (16)
This is the exact finite difference scheme for the Eq. (10).
Another example is the general Logistic differential equation
du ,
— = \u—u?,  ulty) =u
=M 2u”,  u(to) 0 (17)
where (11,42) are positive parameters.
By use of exact solution and Eq. (9), the exact scheme is
Wity — U
% = }quj — /\Qujﬂuj
A . (18)
2.2 Nonstandard finite difference scheme

A Nonstandard Finite Difference scheme is a discrete model of a differential equation that is
constructed according to the following rules.

Rule 1. Denominator functions for the discrete derivatives must, in general, be expressed in term
of more complicated function of the step-sizes than those con-

: T dysin?(By))
ventionally used.[e.g. ( al” P)
Rule 2. Nonlinear terms should, in general, be replaced by nonlocal discrete representations. For
example

200\ Yi+1 + Uj—1

u(t) & w1ty U T U1 1, (19)
3 2 2 Uj+1 + Uj—1
() U1, UG U U U
(20)
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Rule 3. For differential equation having N(> 3) terms, it is generally useful to construct finite
difference scheme for various sub-equation composed of M terms, where M < N, and then
combined all the schemes together in an overall consistent finite difference model.

In general nonstandard schemes are not exact scheme; however, they do offer the prospect of
obtaining finite difference scheme that do not possess the usual numerical instabilities. The
application of nonstandard modeling rules does not necessarily lead to a unique discrete model for
a given differential equation.

3. Implementation of the method

To illustrate the analysis of the previous section, we consider the nonlinear KleinGorden equation

(3]

Uy— AU+ au — bu* = 0, 21

where a and b are constant. We approximate solution of Eq. (21) on a spatial interval [Lo,L1], over
— Li—Lo L . =T
the time interval [0, 7]. We fix the step size h = n in x direction and time step smek‘ — m,

where n and m are integers. Denote x;= Lo +/h,/ = 0(1)n and ¢;= to +jk,j = 0(1)m. The approximate
value of u at the point x;and time ¢ will be denoted by ;.

The (standard) finite difference scheme used to approximate the solution of Eq.
21)is

oR2ujl = A2a20x2ujl — ak2ujl — bk2(ujl )3, (22)
where
5fuf = uf‘H — Quf +u{_],

(ﬁu{ = TL{+1 — 2?1.{ + -u{f] ,
k
) )

In the following, we used the subequation method to obtain a nonstandard finite difference
(NSFD) scheme. A subeqaution is an ordinary differential equation or partial differential equation
obtain by dropping one or more terms appearing in the full equation. In contrast the full equation,
these subequation have known exact scheme, therefore, we can construct a NSFD scheme for the
original partial differential equation. Thus, we have from Eq. (21) the following two useful
subequations:

uy+au=0, (23)
—a’u+ au=0. (24)
The exact scheme of these equations are:
Wt — 27 4 !
Y1

a
Uy — 2y + up— 1 5 h 1
Uil — 2 F U1 —up =0, ¢a(h) = 4asinhz{—r\/j).

(P9 a 2Va

+aw’ =0, ¢i(k)= %sinZ(g\/&)
(25)

(26)
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We will now give a novel scheme that incorporates the exact scheme of the above two
subequations.

i1 ' i1
' = 2u) +u B ‘*z+1 2u[ +u, .

+aul =0
1 (k) a(h) wee @7)

The nonlinear terms in Eq. (21) may be approximate by an expression, which
contains

; 'u + !
3 { -1
(U.') (u; ) +T
Therefore, we have the NSFD scheme of Eq. (21)
+1 j j—1 J J
uj' — Q‘u,f‘ + uf “Hl 2’&, + ui 1 g B j)2ui+1 +uy_ 0
i —a? ; + au; — 0(uy — 5 =0
e1(k) wa(h)

I=1(1)n—1. (28)

The proposed scheme is explicit scheme, to start any computation, it is necessary to know the
solution of u at first time level. We can obtain » ;' by using Taylor expansion of ;! about % and
using the differential equation in (2).

By the help of Taylor expansion, a third-order approximation to u at ¢t = —k can be written as

k 0%u

(S50 +O(K)

ou
-1 _ .0 . 0
wo = = kGt 5 (e . (29)
Using the Eq. (2), we have

= (1) — k(IR) + Sue(ih,0)

(30)
We know uy= a’un— au + b, thus,
u ' = ¢(lh) — ky(h) + g[agcbm(lh) —ao(lh)
2, U+ Dh+ o(( = 1)h)
(IR 2 ] o

4. Stability

For stability of scheme (28), we use the Von Neumann’s method [20]. To investigate the stability
analysis, we may rewrite (28) as

Ad?uf ézul + (I'U,I — i;b( ) U, (32)

where
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1
= m,
1
e am
P L gy
Furthermore, the exact value U/ = u(x, ) satisfies
AS2Ulj — Box2Ulj + aUlj — 3b(Ulj)3 = 0. (33)

We assume that there exists an error &;= U/ —/;at grid point (x;#). Subtracting (33) from (32)
<2 _j 2_j J 7\3 7y3y
Abie] — Boge] 4+ ag] — 3b((U])° — (u])”) = 0

where

U3 = wj1)3 = (UG =y )(U)2 + (il )2 + Uljujl) = elj(3(ug)2),

where (ug)? is a typical value of /;;/ = 0,1,....N used for the linearization of the nonlinear term (2,

). We obtain the error equation
Aor2¢ejl — Box2ejl + aejl — 3begjl (ug)2 = 0. (34)

To establish stability for the scheme (34), we assume that the solution of (34)

at the grid point (/,/) is of the form &= Je, where i = V-1, @ is real and ¢ in general is complex.
Subsituting &= e in the error equation and simplifying, we have the following characteristic

equation

ar( 12
€2 2¢(1 - % sin?(2) 4 20ua)_—a

2 oq ) t1=0

(35)

Equation (35) is of the general form p&%—2¢&+ p = 0, with p,g € R and p > 0.
The Von Neumann’s stability criterion for stability | ¢ |< 1 will always be satisfied, where | ¢ |<

p, otherwise

P<qg<p (36)

The right hand side of inequality (36), gives

ani V2
1— 2B sinz(g) + 7‘53)(%‘) “

<1
A 2 24 )

After simplifying this criterion, it gives the following restriction for the space step
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in2( 0
3111112(E 1) S ahm‘(?)
2Va" " 3blug)* —a (37)
The left hand side of (36), gives
2B 0. 3bluy)? —a
~1<1— —=sin? e S VA
1 sin (2) + o1

3b(u,)?—a
which is satisfied when 2+ 24 ;O, otherwise it gives the following restriction for the time
step
. 9 ( k \/_) - a
sin“(—=+/a —_—
2 h a — 35(1@)2' (38)

We can conclude that the presented method is stable as long as criterion (37) and (38) is satisfied.

5. Numerical illustrations

In this section we present numerical result for our scheme for nonlinear KleinGorden equation.

Example 5.1 Eq. (21) with the initial data

(2,0) \/7 anh|
\/ —a?
\/’ / _a,2 sech ”2((:2 .,:::e[(]l

and Eq. (21) has the following Kink-solution

u(z, t) = \/gtanh[‘ /ﬁ(& — ct)]

a? > 0.

(39)

(40)
a,b,c? —

where

We consider Eq. (21) along with initial condition (39) and exact solution (40), for a =0.01,b = 1,¢
=0.3. We solve this problem with different values of / by scheme (28) and (22). Computed solution
is compared with exact solution at grid points.

Table 1. Maximum absolute error for Example 1.
x scheme (22)

h =0.05 h =0.02 h =0.01
0.2 1.30812(—6) 1.30818(—6) 1 30819(—6)
0.4 3.92575(—6) 3.92606(—6) 3.92611(—6)
0.6 6.47712(—6) 6.47504(—6) 6.47511(—6)
0.8 1.11092(—3) 4.32944(—5) 8.91215(—6)
x scheme (28)

h =0.05 h =10.02 h=0.01
0.2 2.52017(—8) 2.4970(-8) 2.49365( 8)
0.4 5.13999(—8) 5.07277(—8) 5.06304(—8)
0.6 7.66362(—8) 7.55891(—8) 7.54367(—8)
0.8 4.38845(—8)  9.9136(—8)  9.89450(—8)
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In Table 1, we take £ = 0.01. The absolutely maximum error for different values of mesh size &
= 0.05,0.02,0.01 have been calculated. The table show the NSFD in comparison with standard
method are more accurate.

Example 5.2 Eq. (21) with the initial data

[2a a
U(ﬂ. U} = ?SE’C}I[ mi],
[2a | a / a / a
m(:ﬂ.t) =C T msech[ ml] tanh[ ml’], T e [0, 1})

(41)

and Eq. (21) has the following Soliton-solution

u(x,t) = \/%sech[m& — ct)] (42)

We apply NSFD method to Eq. (21) along with initial conditions (41) and exact solution (42) for
values a = 0.003,h = 1,c = 0.25.

Table 2. Maximum absolute error for Example 2.

In Table 2, we take & = k = 0.01. The absolutely
maximum error for different times have been calculated.

6. Conclusion

We have presented a novel approach to solving the Klein-Gorden problem using the nonstandard
finite difference technique in this paper. Compared to normal finite difference schemes, the NSFD
scheme often has a much less stringent time step constraint. Since we are aware that some
numerical techniques result in numerical instabilities, Mickens proposes the so-called NSFD
approach. It has been discovered that the current technique is more effective than the conventional
approach and produces numerical results with precision. The combination of various numerical
methods (like Spline) and NSFD in a system of nonlinear partial differential equations will be the
focus of our next study. The denominator function for the discretizations of the partial differential
equations may be found.
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