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Abstract. We provide a numerical method in this study to solve the one-dimensional 

nonlinear Klein-Gorden problem. We provide a detailed description of the 

mathematical formulation process. The technique is based on nonstandard finite 

differences and is explicit at three levels. The step sizes' denominator function is 

nonlinear. We have provided a stability study of the approach and shown its 

unconditional stability when applied to the one-dimensional nonlinear Klein-Gorden 

problem. We use the suggested strategy to two cases to demonstrate its utility. 
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1. Introduction 

Many nonlinear phenomena are modeled by nonlinear Klein-Gorden equation, such as 

dislocations, ferroelectric and ferromagnetic domain wall. The numerical treatment of one 

dimensional Klein-Gorden equation 

 utt − a2uxx + g(u) = f(x,t) x ∈ (L0,L1) t > t0, (1) 

 

 

 u(x,t0) = ϕ(x), ut(x,t0) = ψ(x), x ∈ (L0,L1) 

and with the boundary conditions 

(2) 

 u(L0,t) = p0(t), u(L1,t) = p1(t), t > t0 (3) 

has been considered, where u = u(x,t) represents the wave displacement at position x and time t,a 

is an known constant and g(u) is the nonlinear force. The function ϕ(x) and ψ(x) are wave modes 
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or kinks and velocity,respectively. When the nonlinear force is given by g(u) = sin(u) then, the 

equation (1) is known as Sin-Gorden equation. 

The Klein-Gorden equation plays an important role in mathematical physics [21,4,8]. There are 

a lot of studies on the numerical solution of initial-boundary value problem of the linear and 

nonlinear Klein-Gorden equation. El-Sayed [9] and Wazwaz et al. [10,22] and Kaya et al. [14] have 

used Adomian decomposition method for solving linear and nonlinear Klein-Gorden equation. 

Parkes et al. [18] and Fu et al. [11] used the Jacobi elliptic function expansion method to find 

double periodic solutions of equation (1). Finite difference methods are known as the first 

technique for solving such equation. These methods are very effective for solving various kinds of 

partial differential equations, conditionally stability of explicit finite difference procedures is 

developed by Dehghan [6]. Jiminez et al. [13] were discussed fourth order finite difference scheme 

for approximation the nonlinear Klein-Gorden equation. Bratsos [3] used a predictor-corrector (P-

C) scheme based on rational approximation of second order three-time level recurrence relations. 

Abbasbandy [1] obtained numerical solution of nonlinear Klein-Gorden equation by variational 

iteration method. Ismail et al. [12] were consider spline difference method for solving Klein-

Gorden equation. 

Yusufoglu [23] presented variational iteration method for studying Klein-Gorden equation. 

Dehghan et al. [7] proposed a numerical scheme to solve Klein-Gorden equation by using the 

collocation approximation solution based on Thin Plate Spline (TPS) radial basis functions (RBF). 

Rashidinia et al. [19] developed a three time level implicit method by using the non-polynomial 

cubic tension spline function for solving Klein-Gorden equation. 

The use of the nonstandard finite difference method has increased in recent years. For example, 

Areanas et al. [2] constructed nonstandard finite difference schemes to obtain numerical solutions 

of the susceptible-infected (SI) and susceptible-infectedrecovered (SIR) fractional-order epidemic 

models. Also, Memarbashi et al. [15] developed these method for solving (SEI) Epidemic Model. 

Dang [5] proposed nonstandard finite difference schemes for a general predator-prey system. In 

these paper, we will discuss nonstandard finite difference for solving Klein-Gorden equation. 

This article organized as following: In section 2, we define nonstandard finite difference 

preliminaries. In section 3, we present the subequation method which is the basic tool in driving 

the nonstandard finite difference scheme. In this section, we discuss the application of proposed 

method to equation (1). In next section, stability analysis has been carried out. In section 5, we 

illustrate two examples for the efficiency of the proposed method and compare it with standard 

finite difference schemes. Concluding remarks are given in section 6. 

2. Preliminaries [17] 

2.1 Exact finite difference scheme 

Consider the following equation 

 , (4) 

where λ is a set of parameters and f(u,t,λ) is such that Eq. 4 has a unique solution over, t0 ⩽ t < T. 

We denote the solution of (4) by 

u(t) = Φ(λ,u0,t0,t), 

with u0 = Φ(λ,u0,t0,t0). 

The discrete model of Eq. (4) can be written as 

(5) 

uj+1 = g(λ,k,uj,tj), (6) 

where k = ∆t and tj = jk. 

Definition 2.1 Equation (4) and (6) are said to have the same general solution if and only if 
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 uj = u(tj), (7) 

for arbitrary values of k. 

Definition 2.2 An exact finite difference scheme is one for which the solution to the difference 

equation has the same general solution as the associated differential equation. 

Theorem 2.1 The Eq. (4) has an exact finite difference scheme given by 

 uj+1 = Φ[λ,uj,tj,tj+1], (8) 

where Φ is given by (5). 

Proof [17]. ■ 

Let u(i)(t);i = 1,2,...,N; be the set of linearly independent functions. It is possible to construct an 

N-th order linear difference equation that has the correspoding discrete functions, ) 

as the solutions for tj = (∆t)j = jk, the required equation is given by the following determinante [16]. 

 . (9) 

To illustrate this procedure, consider the following second order ordinary differential equation 

 , (10) 

where a is a real constant. The two linearly independent solutions are  

 u(1)(t) = ei√at,  u(2)(t) = e−i√at. 

Substitution of these function into Eq. (9) gives 

(11) 

(12) 
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therefore, 

 . (13) 

Evaluation of the determinant  

uj(e−i√ak − ei√ak) + 

uj+1(−e−2i√ak + e2i√ak) + uj+2(e−i√ak − ei√ak) = 0. 

and j → j − 1,we have 

(14) 

 

uj+1 − [2cos(k√a)]uj + uj−1 = 0. 

Using the identity 

(15) 

, 

then Eq. (14) can be written in the form 

 . (16) 

This is the exact finite difference scheme for the Eq. (10). 

Another example is the general Logistic differential equation 

 , (17) 

where (λ1,λ2) are positive parameters. 

By use of exact solution and Eq. (9), the exact scheme is 

 . (18) 

2.2 Nonstandard finite difference scheme 

A Nonstandard Finite Difference scheme is a discrete model of a differential equation that is 

constructed according to the following rules. 

Rule 1. Denominator functions for the discrete derivatives must, in general, be expressed in term 

of more complicated function of the step-sizes than those con- 

 ventionally used.[e.g. (

Rule 2. Nonlinear terms should, in general, be replaced by nonlocal discrete representations. For 

example 

(19) 

 .

 (20) 
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Rule 3. For differential equation having N(⩾ 3) terms, it is generally useful to construct finite 

difference scheme for various sub-equation composed of M terms, where M < N, and then 

combined all the schemes together in an overall consistent finite difference model. 

In general nonstandard schemes are not exact scheme; however, they do offer the prospect of 

obtaining finite difference scheme that do not possess the usual numerical instabilities. The 

application of nonstandard modeling rules does not necessarily lead to a unique discrete model for 

a given differential equation. 

3. Implementation of the method 

To illustrate the analysis of the previous section, we consider the nonlinear KleinGorden equation 

[3] 

 utt − a2uxx + au − bu3 = 0, (21) 

where a and b are constant. We approximate solution of Eq. (21) on a spatial interval [L0,L1], over 

the time interval [0,T]. We fix the step size in x direction and time step size , 

where n and m are integers. Denote xl = L0 +lh,l = 0(1)n and tj = t0 +jk,j = 0(1)m. The approximate 

value of u at the point xl and time tj will be denoted by uj
l . 

The (standard) finite difference scheme used to approximate the solution of Eq. 

(21) is 

 δt2ujl = λ2a2δx2ujl − ak2ujl − bk2(ujl )3, (22) 

where 

. 

In the following, we used the subequation method to obtain a nonstandard finite difference 

(NSFD) scheme. A subeqaution is an ordinary differential equation or partial differential equation 

obtain by dropping one or more terms appearing in the full equation. In contrast the full equation, 

these subequation have known exact scheme, therefore, we can construct a NSFD scheme for the 

original partial differential equation. Thus, we have from Eq. (21) the following two useful 

subequations: 

utt + au = 0, (23) 

−a2uxx + au = 0. (24) 

The exact scheme of these equations are: 

 ,

 (25) 

(26) 
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We will now give a novel scheme that incorporates the exact scheme of the above two 

subequations. 

 . (27) 

The nonlinear terms in Eq. (21) may be approximate by an expression, which 

contains 

. 

Therefore, we have the NSFD scheme of Eq. (21) 

 

The proposed scheme is explicit scheme, to start any computation, it is necessary to know the 

solution of u at first time level. We can obtain u−
l 

1 by using Taylor expansion of u−
l 

1 about u0
l and 

using the differential equation in (2). 

By the help of Taylor expansion, a third-order approximation to u at t = −k can be written as 

 . (29) 

Using the Eq. (2), we have 

 . (30) 

We know utt = a2uxx − au + bu3, thus, 

 . (31) 

4. Stability 

For stability of scheme (28), we use the Von Neumann’s method [20]. To investigate the stability 

analysis, we may rewrite (28) as 

 , (32) 

where 
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. 

Furthermore, the exact value Ul
j = u(xl,tj) satisfies 

 Aδt2Ulj − Bδx2Ulj + aUlj − 3b(Ulj)3 = 0. (33) 

We assume that there exists an error εj
l = Ul

j −uj
l at grid point (xl,tj). Subtracting (33) from (32) 

, 

where 

(Ulj)3 − (ujl )3 = (Ulj − ujl )((Ulj)2 + (ujl )2 + Uljujl ) = εlj(3(ug)2), 

where (ug)2 is a typical value of uj
l ;l = 0,1,....N used for the linearization of the nonlinear term (uj

l 

)3. We obtain the error equation 

 Aδt2εjl − Bδx2εjl + aεjl − 3bεjl (ug)2 = 0. (34) 

To establish stability for the scheme (34), we assume that the solution of (34) 

 
at the grid point (l,j) is of the form εj

l = ξjeiθl, where i = √−1, θ is real and ξ in general is complex. 

Subsituting εj
l = ξjeiθl in the error equation and simplifying, we have the following characteristic 

equation 

 . (35) 

Equation (35) is of the general form pξ2 − 2qξ + p = 0, with p,q ∈ R and p > 0. 

The Von Neumann’s stability criterion for stability | ξ |⩽ 1 will always be satisfied, where | q |⩽ 

p, otherwise 

 −p ⩽ q ⩽ p (36) 

The right hand side of inequality (36), gives 

. 

After simplifying this criterion, it gives the following restriction for the space step 
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 . (37) 

The left hand side of (36), gives 

, 

which is satisfied when 2+ 0, otherwise it gives the following restriction for the time 

step 

 . (38) 

We can conclude that the presented method is stable as long as criterion (37) and (38) is satisfied. 

5. Numerical illustrations 

In this section we present numerical result for our scheme for nonlinear KleinGorden equation. 

Example 5.1 Eq. (21) with the initial data 

 , (39) 

and Eq. (21) has the following Kink-solution 

 ,

 (40) 

where 

We consider Eq. (21) along with initial condition (39) and exact solution (40), for a = 0.01,b = 1,c 

= 0.3. We solve this problem with different values of h by scheme (28) and (22). Computed solution 

is compared with exact solution at grid points. 

 Table 1. Maximum absolute error for Example 1. 



International Journal of Mathematical Modelling and Computation 

Vol 1, Issue 1 2025 

 

46 
Mathlogix publications 

 

 

In Table 1, we take k = 0.01. The absolutely maximum error for different values of mesh size h 

= 0.05,0.02,0.01 have been calculated. The table show the NSFD in comparison with standard 

method are more accurate. 

Example 5.2 Eq. (21) with the initial data 

, 

(41) 

and Eq. (21) has the following Soliton-solution 

 . (42) 

We apply NSFD method to Eq. (21) along with initial conditions (41) and exact solution (42) for 

values a = 0.003,b = 1,c = 0.25. 

 Table 2. Maximum absolute error for Example 2. 

In Table 2, we take h = k = 0.01. The absolutely 

maximum error for different times have been calculated. 

6. Conclusion 

We have presented a novel approach to solving the Klein-Gorden problem using the nonstandard 

finite difference technique in this paper. Compared to normal finite difference schemes, the NSFD 

scheme often has a much less stringent time step constraint. Since we are aware that some 

numerical techniques result in numerical instabilities, Mickens proposes the so-called NSFD 

approach. It has been discovered that the current technique is more effective than the conventional 

approach and produces numerical results with precision. The combination of various numerical 

methods (like Spline) and NSFD in a system of nonlinear partial differential equations will be the 

focus of our next study. The denominator function for the discretizations of the partial differential 

equations may be found. 
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