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Abstract. In this work, we prove Hermite-Hadamard type integral inequalities for 

multiplicatively s-preinvex functions. Additionally, we use certain features of 

multiplicatively s-preinvex and preinvex functions to derive certain novel 

inequalities using multiplicative integrals. 
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1. Introduction 

Let I ⊂ R be an interval with a1,a2 ∈ I and a1 < a2, and let f : I → R be a 

convex function. The double inequality 

 

is known in the literature as Hermite-Hadamard integral inequality for convex functions. Both 

the inequalities hold in the reversed direction if f is concave. In recent years, several 

generalizations and extensions have been considered for classical convexity. One of the most 

important generalizations of the concept of convex function is that of preinvex function 

introduced by Hanson [6]. Ben-Israel and Mond [5] introduced the concepts of invex set and 

preinvex function. Weir and Mond [20], Noor [14] and Yang and Li [21] have studied the basic 

properties of the preinvex functions. For recent generalizations and extensions of the 

preinvex functions, see [2, 3, 7–10, 13, 17, 18]. 

1.1 Preinvexity and Hermite-Hadamard inequalities 

Let us recall some definitions and known results concerning invexity and preinvexity. 
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Definition 1.1 [21] A set ℑ ⊆ R is said to be invex if there exist a function η : ℑ×ℑ→R such 

that 

a1 + µη (a2,a1) ∈ℑ, ∀a1,a2 ∈ℑ, µ ∈ [0,1]. 

The invex set ℑ is also called a η-connected set. 

Definition 1.2 [20] Let f be a function on the invex set ℑ. Then, f is said to be preinvex with 

respect to η, if f (a1 + µη (a2,a1)) ⩽ (1 − µ)f (a1) + µf (a2), ∀a1,a2 ∈ℑ, µ ∈ [0,1]. 

It is to be noted that every convex function is preinvex with respect to the map η (a2,a1) = 

a2 − a1, but the converse is not true, see for example [20, 22]. 

To prove some results in this paper, we need the well-known Condition C introduced by 

Mohan and Neogy in [11]. 

Condition C Let ℑ⊆Rn be an open invex subset with respect to η : ℑ×ℑ→R. 

We say that the bifunction η satisfies the Condition C if for any a1,a2 ∈ℑ and µ ∈ [0,1], 

η (a1,a1 + µη (a2,a1)) = −µη (a2,a1), 

η (a2,a1 + µη (a2,a1)) = (1 − µ)η (a2,a1). 

Note that for every a1,a2 ∈ℑ and µ ∈ [0,1] and from condition C, we have η (a1 + µ2η 

(a2,a1),a1 + µ1η (a2,a1)) = (µ2 − µ1)η (a2,a1). 

In [12] Noor has obtained the following Hermite-Hadamard inequalities for the preinvex 

functions. 

Theorem 1.3 Let f : ℑ = [a1 + η (a2,a1)] → (0,∞) be a preinvex function on the interval of real 

numbers ℑ◦ and a1,a2 ∈ ℑ◦ with a1 < η (a2,a1). Then the following inequality holds: 

. 

Definition 1.4 [15] A nonnegative function f : ℑ ⊂ [0,∞) → R is said to be s-preinvex with 

respect to η for some fixed s ∈ (0,1], if 

f (a1 + µη (a2,a1)) ⩽ (1 − µ)s f (a1) + µsf (a2) 
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for all a1,a2 ∈ℑ, µ ∈ [0,1]. 

Definition 1.5 [16] A function f : ℑ→ (0,∞) is said to be multiplicatively (or logarithmically) 

s-preinvex for s ∈ (0,1)with respect to η, if f (a1 + µη (a2,a1)) ⩽ [f (a1)](1−µ)s [f (a2)]µs , a1,a2 ∈ℑ, 

µ ∈ [0,1]. 

From the above definition, we have 

lnf (a1 + µη (a2,a1)) ⩽ ln{[f (a1)](1−µs)s [f (a2)]µs} 

= ln[f (a1)](1−µ) + ln[f (a2)]µs 

= (1 − µ)s lnf (a1) + µs lnf (a2). 

1.2 Multiplicative calculus 

Recall that the notion of multiplicative integral is denoted by  while the ordinary 

integral is denoted by  This comes from the fact that the sum of the terms of 

product is used in the definition of a classical Riemann integral of f on [u,v], the product of 

terms raised to certain powers is used in the definition of multiplicative integral of f on [u,v]. 

There is the following relation between Riemann integral and multiplicative integral [4]. 

Proposition 1.6 If f is Riemann integrable on [u,v], then f is multiplicative integrable on [u,v] 

and 

. 

In [4], Bashirov et al. show that multiplicative integral has the following results: 

Proposition 1.7 If f is positive and Riemann integrable on [u,v], then f is multiplicative 

integrable on [u,v] and 

 

= 1 and  . 
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2. Main results 

In this section we establish some Hermite-Hadamard type inequalities for multiplicatively s-

preinvex functions. We also obtain integral inequalities of HermiteHadamard type for 

product and quotient of preinvex and multiplicatively spreinvex functions. 

Theorem 2.1 Let ℑ⊆R be an open invex subset with respect to η : ℑ×ℑ→R and a1,a2 ∈ ℑ with 

a1 < a1 + η (a2,a1). If f is a positive and multiplicatively s-preinvex function on the interval [a1,a1 

+ η (a2,a1)] and η satisfies Condition C, then 

 

 ⩽ [f (a1)f (a2)]1/(s+1) . (1) 

Proof Since f is a multiplicatively s-preinvex function, we have for every u,v ∈ [a1,a1 + η (a2,a1)] 

with  

. 

Now let u = a1 + (1 − µ)η (a2,a1) and v = a1 + µη (a2,a1). From Condition C, we have 

 

⩽ (f (a1 + µη (a2,a1)))1/2s (f (a1 + (1 − µ)η (a2,a1)))1/2s . 

Taking logarithms of both sides of the above inequality leads to 
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. 

Integrating the above inequality with respect to µ on [0,1], we have 

 

⩽  

 

which implies that 

 

Thus, we have 

 

 . 

Hence, we obtain 

  , (2) 

which completes the proof of the left hand side of (1). Now consider the right hand side of 

(1). 

 

⩽  

= e∫01((1−µ)s lnf(a11)+µs lnf(a2))dµ 
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= e( 1 2 ∫0 ) 

ln(f(a )f(a )) µsdµ = [f 

(a1)f (a2)]1/(s+1) . 

Hence, we get the inequality 

  . (3) 

Combining (2) and (3) gives the desired result. ■ 

Remark 2.2 If we choose s = 1, then Theorem 2.1 reduces to Theorem 3.1 in 

[18]. 

Remark 2.3 If we choose η (a2,a1) = b − a and s = 1, then Theorem 2.1 reduces to Theorem 5 

in [1]. 

Theorem 2.4 Let ℑ⊆R be an open invex subset with respect to η : ℑ×ℑ→R and a1,a2 ∈ℑ with a1 

< a1 +η (a2,a1). If f and g are positive and multiplicatively s-preinvex functions on the interval 

[a1,a1 + η (a2,a1)] and η satisfies Condition 

C, then 

⩽  

 ⩽ [(f (a1)f (a2)).(g (a1)g (a2))]1/(s+1) . (4) 

Proof Since f and g are positive and multiplicatively s-preinvex functions and η satisfies 

Condition C, we have 

 



International Journal of Mathematical Modelling and Computation 

Vol 1, Issue 1 2025 

54 
Mathlogix publications 

 

⩽ ln((f (a1 + µη (a2,a1)))1/2s .(f (a1 + (1 − µ)η (a2,a1)))1/2s) 

Integrating the above inequality with respect to µ on [0,1], we have 

 

⩽  

 , 

which implies that 

 

⩽  

Thus, we have 

⩽  

 . 
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Hence, we attain 

 ⩽  . (5) 

Consider the second inequality in (4): 

 

⩽  

= e∫01((1−µ)s lnf(a11µ)+sdµµs lnf(a2))dµ+∫011((1−µ)s lng(a1)+µs lng(a2))dµ 

 = eln(f(a1)f(a2))∫0 +ln(g(a1)g(a2))∫0 µsdµ 

= [(f (a1)f (a2)).(g (a1)g (a2))]1/(s+1) . 

Hence, we have 

 

⩽ [(f (a1)f (a2)).(g (a1)g (a2))]1/(s+1) . (6) 

From the inequalities (5) and (6), we get the inequality (4). ■ 

Remark 2.5 If we choose s = 1, then Theorem 2.4 reduces to Theorem 3.2 in 

[18]. 

Remark 2.6 If we choose η (a2,a1) = b − a and s = 1, then Theorem 2.4 reduces to Theorem 7 

in [1]. 

Theorem 2.7 Let ℑ⊆R be an open invex subset with respect to η : ℑ×ℑ→R and a1,a2 ∈ℑ with a1 

< a1 +η (a2,a1). If f and g are positive and multiplicatively s-preinvex functions on the interval 

[a1,a1 + η (a2,a1)] and η satisfies Condition C, then 
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 ⩽  . (7) 

Proof Since f and g are positive and multiplicatively s-preinvex functions and η satisfies 

Condition C, we can write 

 

⩽ ln((f (a1 + µη (a2,a1)))1/2s .(f (a1 + (1 − µ)η (a1,a2)))1/2s) 

Integrating the above inequality with respect to µ on [0,1], we have 

 

⩽  
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which is equivalent to 

 

⩽  

Thus, we have 

⩽  

 

Hence, 

  . (8) 

Now, consider the second inequality in (7): 

 

⩽  



International Journal of Mathematical Modelling and Computation 

Vol 1, Issue 1 2025 

58 
Mathlogix publications 

 

 

Consequently, 

  . (9) 

By using the inequalities (8) and (9), we get the inequality (7) which is the required result.

 ■ 

Remark 2.8 If we choose s = 1, then Theorem 2.7 reduces to Theorem 3.3 in 

[18]. 

Remark 2.9 If we choose η (a2,a1) = b − a and s = 1, then Theorem 2.7 reduces to Theorem 9 

in [1]. 

Theorem 2.10 Let ℑ⊆R be an open invex subset with respect to η : ℑ×ℑ→R and a1,a2 ∈ℑ with 

a1 < a1+η (a2,a1). Let f and g be preinvex and multiplicatively s-preinvex positive functions, 

respectively, on the interval [a1,a1 + η (a2,a1)]. Then, we have 

. 

Proof Note that, 

 

⩽  

 

So, the proof is completed. ■ 
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Remark 2.11 If we choose s = 1, then Theorem 2.10 reduces to Theorem 3.4 in 

[18]. 

Remark 2.12 If we choose η (a2,a1) = b−a and s = 1, then Theorem 2.10 reduces to Theorem 

11 in [1]. 

Theorem 2.13 Let ℑ⊆R be an open invex subset with respect to η : ℑ×ℑ→R and a1,a2 ∈ℑ with 

a1 < a1 + η (a2,a1). Let f and g be multiplicatively s-preinvex and preinvex positive functions, 

respectively, on the interval [a1,a1 + η (a2,a1)]. Then, we have 

. 

Proof Note that 

 

⩽  

 

■ 

Remark 2.14 If we choose s = 1, then Theorem 2.13 reduces to Theorem 3.5 in 

[18]. 

Remark 2.15 If we choose η (a2,a1) = b−a and s = 1, then Theorem 2.13 reduces to Theorem 

12 in [1]. 

Theorem 2.16 Let ℑ⊆R be an open invex subset with respect to η : ℑ×ℑ→R and a1,a2 ∈ℑ with 

a1 < a1+η (a2,a1). Let f and g be preinvex and multiplicatively s-preinvex positive functions, 

respectively, on the interval [a1,a1 + η (a2,a1)]. Then, we have 
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⩽ . 

Proof Note that 

 

 

⩽  

 

Consequently, 

⩽  

This completes the proof. ■ 

Remark 2.17 If we choose s = 1, then Theorem 2.16 reduces to Theorem 3.6 in 

[18]. 

Remark 2.18 If we choose η (a2,a1) = b−a and s = 1, then Theorem 2.16 reduces to Theorem 

13 in [1]. 

3. Conclusion 

This study establishes Hermite-Hadamard type integral inequalities for multiplicatively s-preinvex 

and preinvex functions in the context of multiplicative calculus. Multiplicative calculus is used to 

obtain several Hermite-Hadamard type integral inequalities for the product and quotient of 

multiplicatively s-preinvex and preinvex functions. It has shown that our findings may be used as 

special instances to achieve previously known results. It is anticipated that this article's concept 

would draw in readers. 
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