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Abstract. The current study tackles the issue of converting second order initial value 

problems (IVPs) into a Volterra integral equation of the second type (VIE2) in order 

to approximate their solution. Since the IVPs may be converted to a lower triangular 

system of algebraic equations, we first solve them using Runge–Kutta of the forth–

order technique (RK), after which we convert them into VIE2 and solve them using 

the εmodified block–pulse functions (εMBPFs) and their operational matrix. The 

suggested approach has an appropriate level of accuracy, as shown by numerical 

examples. 
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1. Introduction 

Studies have shown the widespread usage of differential equations in mathematics [1, 16], physics 

[3], biology, and engineering [12, 13] to solve a variety of issues. Most of the issues listed need an 

IVP solution, which calls for the differential equation's solution to meet certain beginning 

conditions. Ordinary differential equation (ODE) solutions have been estimated using a variety of 

techniques in recent years.For instance, Mastorakis et al. [12] solved the second-order problem by 

combining the genetic algorithm with the Neider-Mead technique. Moreover, IVP has the form y′′ 

= f(x,y) Mateescu [13] approximated the solution of second order IVPs using the standard 

evolutionary method. Neural network adaptation was also shown in another study to handle 

second-order IVPs [8]. Furthermore, the adaptation of the differential evolution method to solve 

the second order IVPs of the type y′′ + a1(x)y′ + a0(x)y = b(x) was suggested by Fatimah et al. [5]. 

By converting the second order IVPs into an optimization problem, Bilesanmi et al. [3] were able 
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to get an approximate solution. Edeki et al. [4] used the DTM approach in a different research to 

solve both linear and nonlinear IVPs of second order ODEs. Additionally, it was suggested by 

Fatimah et al. [5] that the differential evolution (DE) technique may be used to produce very 

accurate approximations for second order IVPs. Lastly, Hasan examined the scientific computation 

of IVP in [6]. Considering the second-order differential equation: 

 y′′ = f(x,y,y′) (1) 

an IVPs for a second order differential eqation is the problem of finding a solution y(x) to Eq. (1) 

that satisfies an initial conditions y(x0) and y′(x0) are the fixed states. We cosider the IVP as follows: 

y′′ = f(x,y,y′) 

(2) 

y(x0) = y0
,y′(x0) = y1 

The present paper intended to solve Eq. (2) via Runge–Kutta of the forth–order method [1, 2]. For 

this purpose, IVP of the second order is converted into a VIE2 and this equation is solved by 

applying the basis function εmodified block-pulse [15]. One of the reasons for adopting this 

approach is that some problems of ODEs via analytical methods of ODE like the Euler method 

[14], Taylor method [14], Runge–Kutta method and so, did not give a good approximate; therefore, 

the problems were converted into VIE2 to improve the approximate solution. 

It should be mentioned that section 2 reviews differential equation and RK method and section 

3 reviews the εmodified block-pulse function. In addition, section 4 deals with the proposed 

method and section 5 presents Error analysis. Then, section 6 gives the numerical results, and we 

show the results of Theorem 5.2 for all examples in Table 5 and section 7 concludes the study. 

2. Differential equation of the second–order 

This section reviews differential eqation [3] and Rung–Kutta method [1] that we used for obtaining 

the approximate solution of differential equation of the second kind. 

Definition 2.1 ([2]) It is widely accepted that a second order linear differential equation for 

function y would be 

 y′′ + a1(x)y′ + a0(x)y = b(t) (3) 

so that a1,a0,b refer to the functions on the interval I ⊂ R. In addition, Eq. (3) (a) would be 

homogeneos iff the source b(x) = 0 for all x ∈ R. 

(b) would have constant coefficients if a1 and a0 are constants, and (c) would have 

variable coefficients if either a1 or a0 is not constant. 

2.1 Runge–Kutta of forth–order method [1, 2] 

The RK scheme is a method with the greatest utilization to solve the differential equation with 

numerical procedures. In order to compute the solution of a first order IVP. The following relations 

were utilized for a RK method of the forth– order [1] 

 

{ 
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Moreover, the RK method could be utilized for the second order differential equation of the form 

y′′ = f(x,y,y′) 

for the second order differential equations, thus, the forth–order formulas would be 

[2] 

 

3. εModified block–pulse function (εMBPFs) 

It is notable that many authors investigated and reviewed the block–pulse functions (BPFs) method 

and used it to solve many problems, definition, vector forms, BPFs expansion and operational 

matrix [7, 11]. This section presents a review of εMBPFs. 

Definition 3.1 ([10]) A (n + 1)–set of εMBPFs ϕi(t), i = 0,...,n − 1 on the interval [0,T) is defined 

as: 

 

(4) 

ϕi(t) = 

 

Therefore, there are some properties for εMBPFs as follows: 

εMBPFs are disjoint and orthogonal 

 

and εMBPFs like BPFs are complete: 

 1 ∞ 2 2 

2 

f (t)dt = ∑fi ∥ϕi(t)∥ . 

 0 i=0 

Using notation Φn(t) = [ϕ0(t),...,ϕn(t)]
T , the following properties are achieved: 

∫ 
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 ϕ0(t)0 0 ... 0  

 Φn+1(t)ΦnT
+1(t) =0... ϕ1(t) 0 ...... 00 

 0 ... 0 ... ϕn(t) 

ΦT
n+1(t)Φn+1(t) = 1 

 Φn+1(t)ΦTn+1(t)V = V˜Φn+1(t) (5) 

 ΦTn+1(t)BΦn+1(t) = BˆT Φn+1(t), (6) 

if  then the operational matrix of εMBPFs would be defined in this way: 

 , (7) 

and it has features and usage similar to the operational matrix BPFs in [3, 11]. 

Definition 3.2 ([10]) εMBPFs expansion of continuous function f(t) ∈ L2([0,1)) based on ϕi, i = 

0,...,n would be defined as: 

, 

where 

 

and ∆(Ii) is the length of interval Ii defined (4). 

4. Main idea 

Let 

y′′ = f(x,y,y′) y(x0) = 

α,y′(x0) = β 

or 

y′′ + a1(x)y′ + a0(x)y = b(x) 

(8) 

y(x0) = α,y′(x0) = β 

{ 

{ 
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where α and β are the given constants. 

For this work, we transform Eq. (8) into VIE2. Therefore, we consider 

 y′′(x) = q(x). (9) 

Then, both sides of Eq. (9) from 0 to x is integrated and yielded 

  (10) 

Again, both side of the Eq. (10) would be integrated based on x from 0 to x so that: 

  (11) 

Then, substituting Eq. (9), Eq. (10), and Eq. (11) into Eq. (8) gives 

 

Then, 

 

Finally, we obtain the VIE2 as follows: 

  (12) 

so that 

f(x) = b(x) − βa1(x) − αa0(x) − βxa0(x), k(x,t) = −(a1(x) + a0(x)(x − t)). 

Then, applying εMBPFs method for solving Eq. (12) and approximating functions f, q and k with 

respect to εMBPFs would give: 

k(x,t) ≃ ΦT (x)KΦ(t) 

 f(x) ≃ FtΦ(x) = ΦT (x)F (13) 

q(x) ≃ QT Φ(x) = ΦT (x)Q 
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Here, m–vectors F, Q, and m × m matrix K respectively stand for εMBPFs coefficients of f, q and 

k. Note that Q in Eq. (13) is the unknown vector and should be obtained. Therefore, substituting 

(13) into (12) gives 

  (14) 

Using (5) and operational matrix P in (7), we have  

 QT Φ(x) ≃ FT Φ(x) + ΦT (x)KQP˜ Φ(x), (15) 

where, KQP˜ represets (n+1)×(n+1) matrix. Thus, if ε equals to 0, just n BPFs would exist and the 

vectors dimension and matrices decline to n. By Eq. (6), we can write: 

QT Φ(x) ≃ FT Φ(x) + QˆT Φ(x), 

where Qˆ refers to (n+1)–vector with the components equivalent to diagonal entries of the matrix 

KQP˜ . Finally, 

Q − Qˆ = F. 

Therefore, the vector Qˆ could be written as follows: 

. 

Now, substituting (15) into Eq. (14) would give: 

 . 

Now, replacing ≃ with =, Eq. (11) reduces to a linear lower triangular system as: 

G = F 
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Cosequently, unknown cofficients Qj, j = 0,1,...,n are calculated by solving this linear equation 

system. Now, if εj = jhk , j = 0,1,...,n − 1, there would be k numerical answers of fˆ
εj, j = 0,...,n − 1 so 

that based on theorem 5.2, we can estimate the error of: 

. 

5. Error analysis 

This section addresses error analysis. For simplicity we assume T = 1 and in the following 

theorem. 

Theorem 5.1 If  and , then: 

, achieves its minimum value. 

(ii) {fˆn(t)} approaches f(t) point wise. 

. 

Proof See [9]. ■ 

Theorem 5.2 Suppose that 

(1) f(t) is continuous and could be differentiated in [−h,1+h] with bounded derivative so that |f′(t)| 

< M. 

 are correspondingly BPFs. 

k MBPs expansions of f(t) base on (m+1) εMBPFs over 

internal [0,1). 

, 

then, , and ∥f(t) − f¯(t)∥ = O(h
k) in [h,1 − h]. 

Proof See [10]. ■ 

6. Numerical examples 

The εMBPFs, is applied for examples. As seen in the examples below, n refers to the number of 

the block–pulse function and represents the times of modification if k is equal to 0. Moreover, 

expansion was on the basis BPF; in other ways, expansion was on the basis of εMBPFs. In these 

examples, the approximate solution presented method was compared with the exact solution and 

RK method. Tables 1–4 presents the numerical results of Examples 1–4, respectively. Moreover, 

Table 5 reports the results of Theorem 5.2. For each example, we have two figures, one of the 

figures compared the approximate solution by RK method with the exact solution, and the other 

figure made a comparison between the approximate solution of the present method with the exact 

solution. The computations related to the examples were performed using Matlab R2017a. 
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Example 6.1 Consider the following IVP: 

  (16) 

with the exact solution y(x) = xe−x. We converted Eq. (16) into VIE2 and considered y′′(x) = q(x) 

by integrating both sides. Finally, we have: 

 

Table 1 reports the numerical results. Moreover, Figure 1 shows the results of the exact and 

approximate solution by RK4 method and Figure 2 depicts the result of the present method. 

 Table 1. Numerical results for Example 6.1. 

Value x Exact 

solution 

Approximate 

solution 

n = 128, k = 0 n = 128, k = 3 

Present Present 

  by RK4 method method 

0 0.000000 0.000000 0.003881 0.002915 

0.1 0.090484 0.090325 0.088562 0.093328 

0.2 0.163746 0.162999 0.163228 0.161943 

0.3 0.222245 0.220562 0.222645 0.221632 

0.4 0.268128 0.265234 0.269064 0.268281 

0.5 0.303265 0.298945 0.304440 0.303853 

0.6 0.329287 0.323378 0.328768 0.330052 

0.7 0.347610 0.339994 0.347492 0.347199 

0.8 0.359463 0.350058 0.359532 0.359357 

0.9 0.365913 0.354667 0.366006 0.365928 

 

 Figure 2. The result solution of the pro- 

Figure 1. The result solution by RK4 

posed scheme for n = 128, k = 3 

(Exammethod (Example 6.1). 
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ple 6.1). 

Example 6.2 Consider the following IVP: 

  (17) 

with the exact solution y(x) = x − x2. Therefore, we converted of Eq. (17) into VIE2 and considered 

y′′(x) = q(x) by integrating both sides in order to have: 

 

Table 2 peresents the numerical results. Moreover, Figure 3 shows the results of the exact and 

approximate solutions by RK4 method and Figure 4 depicts the results of the present method. 

 Table 2. Numerical result for Example 6.2. 

Value x Exact 

solution 

Approximate 

solution 

n = 128, k = 0 n = 128, k = 3 

Present Present 

  by RK4 method method 

0 0.000000 0.000000 0.003886 0.002918 

0.1 0.090000 0.089842 0.088115 0.092796 

0.2 0.160000 0.159252 0.159526 0.158348 

0.3 0.210000 0.208337 0.210308 0.209526 

0.4 0.240000 0.237205 0.240459 0.240074 

0.5 0.250000 0.245968 0.249981 0.249992 

0.6 0.240000 0.234738 0.240459 0.239281 

0.7 0.210000 0.203627 0.210308 0.211082 

0.8 0.160000 0.152747 0.159526 0.160697 

0.9 0.090000 0.082205 0.088115 0.089682 

 

 Figure 4. The result solution of the pro- 

Figure 3. The result solution by RK4 
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posed scheme for n = 128, k = 3 (Exam- 

method (Example 6.2). 

ple 6.2). 

Example 6.3 This example consists of the following IVP: 

y′′(x) + y′(x) = ex 

(18) 

y(0) = 0,y′(0) = 1 

with the exact solution y(x) = sinh(x). Therefore, we converted of Eq. (18) into VIE2 and considered 

y′′(x) = q(x) , by integrating the both sides in order to have: 

 

Table 3 presents the numerical results. Moreover, Figure 5 shows the results of the exact and 

approximate solution by RK4 method and Figure 6 depicts the results of the present method. 

 Table 3. Numerical results for Example 6.3. 

Value x Exact 

solution 

Approximate 

solution 

n = 128, k = 0 n = 128, k = 3 

Present Present 

  by RK4 method method 

0 0.000000 0.000000 0.003901 0.002927 

0.1 0.100167 0.100000 0.097807 0.103696 

0.2 0.201336 0.200509 0.200535 0.198544 

0.3 0.304520 0.302532 0.305334 0.303292 

0.4 0.410752 0.407091 0.413285 0.411172 

0.5 0.521095 0.515233 0.525502 0.523296 

0.6 0.636654 0.628039 0.633875 0.640823 

0.7 0.758584 0.746638 0.757602 0.755153 

0.8 0.888106 0.872219 0.889150 0.886538 

0.9 1.026517 1.006036 1.029877 1.027075 

 

{ 
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 Figure 6. The result solution of the pro- 

Figure 5. The result solution by RK4 

posed scheme for n = 128, k = 3 

(Exammethod (Example 6.3). 

ple 6.3). 

Example 6.4 Consider the following IVP [14] 

  (19) 

with the exact solution y(x) = 100x−5x2+990(e−0.1x−1). Therefore, we converted of Eq. (19) into 

VIE2 and considered y′′(x) = q(x) , by integrating the both sides in order to have: 

 

Table 4 presented the numerical results. Moreover, Figure 7 depicts the results of the exact and 

approximate solution by RK4 method and Figure 8 shows the result of the present method. 

 Table 4. Numerical results for Example 6.4. 

Value x Exact 

solution 

Approximate 

solution 

n = 128, k = 0 n = 128, k = 3 

Present Present 

  by RK4 method method 

0 0.000000 0.000000 0.003905 0.002929 

0.1 0.099335 0.100502 0.097025 0.102796 

0.2 0.196687 0.201512 0.195935 0.194058 

0.3 0.291078 0.302030 0.291800 0.289991 

0.4 0.381545 0.401047 0.383609 0.381888 

0.5 0.467130 0.497543 0.470359 0.468745 

0.6 0.546888 0.590486 0.545091 0.549573 

0.7 0.619882 0.678837 0.619338 0.617982 

0.8 0.685183 0.761544 0.685658 0.684463 

0.9 0.741873 0.837546 0.743089 0.742074 

 



International Journal of Mathematical Modelling and Computation 

Vol 1, Issue 1 2025 

73 
Mathlogix publications 

 
 

Figure 7. The result solution by RK4 Figure 8. The result solution of the promethod (Example 

6.4). posed scheme for n = 128, k = 3 (Exam- 

ple 6.4). 

 Table 5. Bound of error. 

7. Conclusion 

The present research solved an initial value problem by transformation into Volterra integral 

equation of the second type. It was found that the numerical solution of these equations using the 

expansion based on εMBPFs would be better than the numerical solution of the Runge–Kutta of 

the fourth–order method. Consequently, the results obtained in Tables 1–4 and bound of errors in 

Table 5 confirmed that method is efficient. 
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