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Abstract. The current study tackles the issue of converting second order initial value
problems (IVPs) into a Volterra integral equation of the second type (VIE2) in order
to approximate their solution. Since the [IVPs may be converted to a lower triangular
system of algebraic equations, we first solve them using Runge—Kutta of the forth—
order technique (RK), after which we convert them into VIE2 and solve them using
the emodified block—pulse functions (eMBPFs) and their operational matrix. The
suggested approach has an appropriate level of accuracy, as shown by numerical
examples.
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1. Introduction

Studies have shown the widespread usage of differential equations in mathematics [1, 16], physics
[3], biology, and engineering [12, 13] to solve a variety of issues. Most of the issues listed need an
IVP solution, which calls for the differential equation's solution to meet certain beginning
conditions. Ordinary differential equation (ODE) solutions have been estimated using a variety of
techniques in recent years.For instance, Mastorakis et al. [12] solved the second-order problem by
combining the genetic algorithm with the Neider-Mead technique. Moreover, IVP has the form y"”
= f(x,y) Mateescu [13] approximated the solution of second order IVPs using the standard
evolutionary method. Neural network adaptation was also shown in another study to handle
second-order IVPs [8]. Furthermore, the adaptation of the differential evolution method to solve
the second order IVPs of the type y” + al(x)y’ + a0(x)y = b(x) was suggested by Fatimah et al. [5].
By converting the second order IVPs into an optimization problem, Bilesanmi et al. [3] were able
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to get an approximate solution. Edeki et al. [4] used the DTM approach in a different research to
solve both linear and nonlinear IVPs of second order ODEs. Additionally, it was suggested by
Fatimah et al. [5] that the differential evolution (DE) technique may be used to produce very
accurate approximations for second order IVPs. Lastly, Hasan examined the scientific computation
of IVP in [6]. Considering the second-order differential equation:

V' =x)") (D

an I'VPs for a second order differential eqation is the problem of finding a solution y(x) to Eq. (1)
that satisfies an initial conditions y(xo) and y'(xo) are the fixed states. We cosider the IVP as follows:
{
V' =fxxy)

)

Y(x0) = yo”"(x0) = yi
The present paper intended to solve Eq. (2) via Runge—Kutta of the forth—order method [1, 2]. For
this purpose, IVP of the second order is converted into a VIE2 and this equation is solved by
applying the basis function emodified block-pulse [15]. One of the reasons for adopting this
approach is that some problems of ODEs via analytical methods of ODE like the Euler method
[14], Taylor method [14], Runge—Kutta method and so, did not give a good approximate; therefore,

the problems were converted into VIE2 to improve the approximate solution.
It should be mentioned that section 2 reviews differential equation and RK method and section
3 reviews the emodified block-pulse function. In addition, section 4 deals with the proposed
method and section 5 presents Error analysis. Then, section 6 gives the numerical results, and we

show the results of Theorem 5.2 for all examples in Table 5 and section 7 concludes the study.

2. Differential equation of the second—order

This section reviews differential eqation [3] and Rung—Kutta method [1] that we used for obtaining
the approximate solution of differential equation of the second kind.

Definition 2.1 ([2]) It is widely accepted that a second order linear differential equation for
function y would be

V' ai(x)y' + aox)y = b(1) 3)

so that ai,a0,b refer to the functions on the interval / ¢ R. In addition, Eq. (3) (a) would be
homogeneos iff the source b(x) =0 for all x € R.

(b) would have constant coefficients if a; and ao are constants, and (c) would have
variable coefficients if either a; or ao is not constant.

2.1 Runge—Kutta of forth—order method [1, 2]

The RK scheme is a method with the greatest utilization to solve the differential equation with
numerical procedures. In order to compute the solution of a first order IVP. The following relations
were utilized for a RK method of the forth— order [1]

k1 = hf(-rna y??)
ko = hf(zn+ % yn + 5)
Sky = hf(an + 2y + 52)
ki = hf(xn + h,yn + k3)
Yn+1l = Yn + é(kl +2Ks + 2K3 + ky) + O(hs)
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Moreover, the RK method could be utilized for the second order differential equation of the form

V' =fx)")

for the second order differential equations, thus, the forth—order formulas would be
[2]

’ !1 = hf(zn, yn, yn)

b=hf(an+ S+ %0 +5)

S=hfen+ 5 yn+ Boun + %)

di = hf(xn + hyyn + ks, y;z + k’%)

Yni1 = Y + 5 (K] + 2k + 25 + Kf) + O(h°)

3. ¢Modified block—pulse function (¢sMBPFs)

It is notable that many authors investigated and reviewed the block—pulse functions (BPFs) method
and used it to solve many problems, definition, vector forms, BPFs expansion and operational
matrix [7, 11]. This section presents a review of eMBPFs.

Definition 3.1 ([10]) A (n + 1)-set of eMBPFs ¢i(¢), i = 0,...,n — 1 on the interval [0,7) is defined

as:
I—- =
ou(t)={1 tel0, o) =1
0 .,ow
1 e[l —eT) =1,
¢n-(f):{0 ,0.W @

el UL o o<i<n 40 -

Therefore, there are some properties for eMBPFs as follows:
eMBPFs are disjoint and orthogonal

Qi(t)p,(t) = “, 4,75=0,....n
ZODTORS MRS
1
[ 60050t = hay;,
J0
and eMBPFs like BPFs are complete:
j 1 o 2 2
2
S@dt=Yfillg(OIl .
0 i=0

Using notation ®,(£) = [@o(?).....¢.(¥)]”, the following properties are achieved:
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JLULgO®H0 0. 0L
On+1(1)dnr(£) =0... $1(H0..... 0o
0 0 (D)
T +1(HD,+1(1) =1
Ont1(H)OTn+1(H)V =V Ont+l(t) &)
OTn+1(t)BOn+1(¢) = B°T dn+1(2), (6)

_ 7T
i = % then the operational matrix of eMBPFs would be defined in this way:

'h,—sh ceh—ce...h—ch

m

< - _
0 % h ... h h
0o 0 %4 ... h h
Prtxmen = | . : : : :
0 0 0 Lo h

L0 0 0 0 5 | ™

and it has features and usage similar to the operational matrix BPFs in [3, 11].

Definition 3.2 ([10]) eMBPFs expansion of continuous function f{#) € L*([0,1)) based on ¢;, i =

0,...,n would be defined as:
i
f(t) = fop1 = Z figi(t)
i=0 ,

where

I N
fi= 5117 [ F0eat

and A(Z)) is the length of interval /;defined (4).

4. Main idea

Let
V' =[xy y(xo) =
lay'(x0) =B

or

Y+ ai(x)y' + aox)y = b(x)
{ ®)
W(x0) = a,y"(x0) =
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where a and f are the given constants.
For this work, we transform Eq. (8) into VIE2. Therefore, we consider

V') = q(x). )

Then, both sides of Eq. (9) from 0 to x is integrated and yielded

/DI y"(x)dx = fowq{t)dt

A

y (@) — o () = ] a(t)dt

0

—sy/(z) = B+ [0 "t

(10)
Again, both side of the Eq. (10) would be integrated based on x from 0 to x so that:
/H o (z)dz — / Bdz + / / () dtda,
JO J0 JO JO
=y(x) =a+ fxr+ /”(:1: — t)q(t)dt.
0 (11)
Then, substituting Eq. (9), Eq. (10), and Eq. (11) into Eq. (8) gives
q(z) + a1 (x) (B + ] q(t)dt) + ao(z)(a + Bz + f (x —t)q(t)dt) = b(x)
0 0
Then,
q(t) = b(z) — Bar(x) — aao(x) — Brao(z) — / (a1(x) — ao(z)(z — t))q(t)dt.
J0
Finally, we obtain the VIE2 as follows:
q(x) = f(x)+ j k(x,t)q(t)dt,
0 (12)
so that
Jx) = b(x) — pai(x) = aao(x) — fxao(x), k(x,1) = ~(a1(x) + ao(x)(x — 1))

Then, applying eMBPFs method for solving Eq. (12) and approximating functions f; g and k with
respect to eMBPFs would give:

k(x,t) = O (x)KO(7)

£x) = FO(x) = d (x)F (13)

q(x) = 0" 0(x) = ®' (x)Q

66
Mathlogix publications



International Journal of Mathematical Modelling and Computation
Vol 1, Issue 1 2025

Here, m—vectors F, Q, and m x m matrix K respectively stand for eMBPFs coefficients of f, ¢ and
k. Note that Q in Eq. (13) is the unknown vector and should be obtained. Therefore, substituting
(13) into (12) gives

QTd(x) ~ FTd(x) + /L ol () Ko(1)07 (1)Qds
0

=FTo(x) + o1 (2)K /03 O(t)dT (1) Qds. "

Using (5) and operational matrix P in (7), we have
OTd(x) = FTd(x) + T (x)KOP” D(x), (15)

where, K¢~ represets (n+1)x(n+1) matrix. Thus, if & equals to 0, just # BPFs would exist and the

vectors dimension and matrices decline to n. By Eq. (6), we can write:

0" 0(x) = FTd(x) + 0T O(x),

where Q" refers to (nt+1)—vector with the components equivalent to diagonal entries of the matrix
KQP" . Finally,

0-0=F

Therefore, the vector Q" could be written as follows:
h—e k
5 K0,090
(h —e)ki0q0 + 2k1 101
(h —e)ka0go + hk21q1 + %kg’gqg

F\)
I

(h —€)knoqo + hkn1qi + - -+ hk‘ﬂ,’(”_l)%l—l + %kn.TLQR i

Now, substituting (15) into Eq. (14) would give:

1-— (hgs) koo 0 0 0 4o

—(h—e)kio 1— (%) k1. 0 . 0 0
G= —(h — E)k’Q,D —hkz’l 1— (%) koo ... 0 qo

—(h —¢&)kno  —hkp —hkps ... 1— (%) knn]lqn]

Now, replacing =~ with =, Eq. (11) reduces to a linear lower triangular system as:
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Cosequently, unknown cofficients Q;, j = 0,1,...,n are calculated by solving this linear equation
system. Now, if g;=2;, j=0,1,...,n — 1, there would be k numerical answers of /', j = 0,...,n — 1 so

that based on theorem 5.2, we can estimate the error of:

n—1

o= (5) L h0

5. Error analysis

_ 1
This section addresses error analysis. For simplicity we assume 7= 1 and h'= Jin the following
theorem.

~ o 1 1 L . A .
Theorem 5.1 Iffn = Z?:U f'i@i(t)and fi = A(L;) -fU f@)pi(t)dt, i = 0...., ”’, then:
P 2

(5) 0= JU (f(t) - Z?:o f’-%(t)) df, achieves its minimum value.

(ii) {"«(1)} approaches f(t) point wise.

s pl g 0o e
(@) [y fA()dt = 327 fE N all”,
Proof See [9]. =

Theorem 5.2 Suppose that

(1) f(t) is continuous and could be differentiated in [—h, 1+h] with bounded derivative so that |f ()|
<M.

(2) f‘%(t), i=0,1,....,n—1

h MBPs (k—1)h
%10 Tk _k  MBPs expansions of t) base on (m+1) eMBPFs over

are correspondingly BPFs.

internal [0,1).

(3) f(H) = (3) XiZ fa(d)

5

A

then, I () = fue (Ol = O(h), and ) — 7Ol = O in [h,1 — h).

Proof See [10]. ]
6. Numerical examples

The eMBPFs, is applied for examples. As seen in the examples below, n refers to the number of
the block—pulse function and represents the times of modification if & is equal to 0. Moreover,
expansion was on the basis BPF; in other ways, expansion was on the basis of eMBPFs. In these
examples, the approximate solution presented method was compared with the exact solution and
RK method. Tables 14 presents the numerical results of Examples 1-4, respectively. Moreover,
Table 5 reports the results of Theorem 5.2. For each example, we have two figures, one of the
figures compared the approximate solution by RK method with the exact solution, and the other
figure made a comparison between the approximate solution of the present method with the exact
solution. The computations related to the examples were performed using Matlab R2017a.
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Example 6.1 Consider the following IVP:

{

' () + o (x) = —e*
y(0) =0,9'(0)=1

Vol 1, Issue 1 2025

(16)

with the exact solution y(x) = xe—*. We converted Eq. (16) into VIE2 and considered y"(x) = g(x)

by integrating both sides. Finally, we have:

glx)=1—¢e "+ f —q(t)dt.
0

Table 1 reports the numerical results. Moreover, Figure 1 shows the results of the exact and
approximate solution by RK4 method and Figure 2 depicts the result of the present method.

Table 1.  Numerical results for Example 6.1.
Value x  Exact Approximate n=128,k=0 n=128,k=3
solution solution Present Present
by RK4 method method
0 0.000000 0.000000 0.003881 0.002915

0.1 0.090484 0.090325 0.088562 0.093328
0.2 0.163746 0.162999 0.163228 0.161943
0.3 0.222245 0.220562 0.222645 0.221632
0.4 0.268128 0.265234 0.269064 0.268281
0.5 0.303265 0.298945 0.304440 0.303853
0.6 0.329287 0.323378 0.328768 0.330052
0.7 0.347610 0.339994 0.347492 0.347199
0.8 0.359463 0.350058 0.359532 0.359357
0.9 0.365913 0.354667 0.366006 0.365928

04 B 04

L - 0.35 " *

0.35 o= P _ P

0.3 » o3 ul

0.25 2z 0z .

i r - /0/
= /Q % 02t /
£ 02 / /
0'/ 0.15 | /9
0.15 /
. 3 0.41f ¢’ |
! ‘ / =@ Exacix
0.05 J — - i:z:;:imal x by RK method = J 3 T it |
; 1 T od ‘ S
0‘;’ n " L L " L L L 0.1 0.2 0.3 0.4 05 086 0.7 0.8 0.9
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 X
Figure 2. The result solution of the pro-
Figure 1. The result solution by RK4

(Exammethod (Example 6.1).
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ple 6.1).

Example 6.2 Consider the following IVP:

{y”(:r:) +y@)=-2+z—2°

y(0) =0,y'(0) =1 (17)

with the exact solution y(x) = x — x2. Therefore, we converted of Eq. (17) into VIE2 and considered

1"'(x) = g(x) by integrating both sides in order to have:

q(r) = — 7 +———+f (t—x)q

Table 2 peresents the numerical results. Moreover, Figure 3 shows the results of the exact and
approximate solutions by RK4 method and Figure 4 depicts the results of the present method.

Table 2. Numerical result for Example 6.2.
Value x  Exact Approximate n=128,k=0 n=128,k=3
solution solution Present Present
by RK4 method method
0 0.000000 0.000000 0.003886 0.002918
0.1 0.090000 0.089842 0.088115 0.092796
0.2 0.160000 0.159252 0.159526 0.158348
0.3 0.210000 0.208337 0.210308 0.209526
0.4 0.240000 0.237205 0.240459 0.240074
0.5 0.250000 0.245968 0.249981 0.249992
0.6 0.240000 0.234738 0.240459 0.239281
0.7 0.210000 0.203627 0.210308 0.211082
0.8 0.160000 0.152747 0.159526 0.160697
0.9 0.090000 0.082205 0.088115 0.089682
0.25 . , P
025 o ~a,
& <4
# o 3 “q
' 4 'Y 0.2} / \
0.2 = / < \
\Y N\
s, Q
015 - “ N 0.15 \
2 \Y % /
= \Y
01+ p \ir “ I'}'l 'Y
'}
0087 = # Exautx 005 f’ -e i:?):‘u:mat % by VIEZ
1 Appr‘oximal % by RK method I .
0é Gﬁ 0.1 0.2 03 0.4 0.5 E‘-S OjT 0.8 0.9
0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.8 x
Figure 4. The result solution of the pro-
Figure 3. The result solution by RK4
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posed scheme for n = 128, k=3 (Exam-

method (Example 6.2).
ple 6.2).

Example 6.3 This example consists of the following IVP:

V') +y'(x) =€
{ (18)
»0)=0,"(0)=1

with the exact solution y(x) = sinh(x). Therefore, we converted of Eq. (18) into VIE2 and considered
"'(x) = g(x) , by integrating the both sides in order to have:

q(z) =e" -1+ /: —q(t)dt.

Table 3 presents the numerical results. Moreover, Figure 5 shows the results of the exact and
approximate solution by RK4 method and Figure 6 depicts the results of the present method.

Table 3.  Numerical results for Example 6.3.
Value x  Exact Approximate n=128,k=0 n=128,k=3
solution solution Present Present
by RK4 method method
0 0.000000 0.000000 0.003901 0.002927
0.1 0.100167 0.100000 0.097807 0.103696
0.2 0.201336 0.200509 0.200535 0.198544
0.3 0.304520 0.302532 0.305334 0.303292
0.4 0.410752 0.407091 0.413285 0.411172
0.5 0.521095 0.515233 0.525502 0.523296
0.6 0.636654 0.628039 0.633875 0.640823
0.7 0.758584 0.746638 0.757602 0.755153
0.8 0.888106 0.872219 0.889150 0.886538
0.9 1.026517 1.006036 1.029877 1.027075
=@ Exactx
ik - izi:\mmxby RK method }’ 1 AppmmmalxhwaZ_ -’
2 # ]
08 ? al o8r s ’
: »
- 2 = ,)5/
Zos! P » e 4
= v N
04} 4 i = i
- 4 5 > i
” 0.2 o
0.2 P 3
L A
Y 0 e . . L .
o¥ 2 5 2 0 0.1 0.2 0.3 04 05 06 0.7 0.8 0.9
0 0.1 0.2 0.3 04 0.5 0.6 0.7 08 09
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Figure 6. The result solution of the pro-
Figure 5. The result solution by RK4
posed scheme for n =128, k=3
(Exammethod (Example 6.3).
ple 6.3).

Example 6.4 Consider the following IVP [14]

{y”(:c) — 0.1y (z) = —x
y(0) =0,9/(0) =1 (19)

with the exact solution y(x) = 100x—5x?+990(e—"""—1). Therefore, we converted of Eq. (19) into

VIE2 and considered y"(x) = g(x) , by integrating the both sides in order to have:

1 . T
q(x) = —ga:'5 +a+ [ —0.1¢(t)dt.
J0

Table 4 presented the numerical results. Moreover, Figure 7 depicts the results of the exact and
approximate solution by RK4 method and Figure 8 shows the result of the present method.

Table 4.  Numerical results for Example 6.4.
Valuex  Exact Approximate n=128,k=0 n=128,k=3

solution solution Present Present
by RK4 method method
0 0.000000 0.000000 0.003905 0.002929
0.1 0.099335 0.100502 0.097025 0.102796
0.2 0.196687 0.201512 0.195935 0.194058
0.3 0.291078 0.302030 0.291800 0.289991
0.4 0.381545 0.401047 0.383609 0.381888
0.5 0.467130 0.497543 0.470359 0.468745
0.6 0.546888 0.590486 0.545091 0.549573
0.7 0.619882 0.678837 0.619338 0.617982
0.8 0.685183 0.761544 0.685658 0.684463
0.9 0.741873 0.837546 0.743089 0.742074
0.8 T T
0.9 T T T T T T
=@ Exactx .’
0.8 e i;zf;:ime?x by RK method i - Approximal x by VIE2] # ol
o7k ,V’? 06 15 ~d
06F : 4"’ 1 05| ’,'/
" o
= 05+ ), < ’é 04l v
>;04 = ’(,/ is1 0/
= / ~ 0.2} o :
0.2 P4 /
/ o1f M
0.1+ > & 1 /
o |
o¥ 0 0.1 0.2 03 0.4 0.5 06 0.7 0.8 0.8
0 0.1 0.2 0.3 04 0.5 0.6 0.7 08 0.9 X
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Figure 7. The result solution by RK4 Figure 8. The result solution of the promethod (Example
6.4). posed scheme for n =128, k=3 (Exam-

ple 6.4).

Table 5.  Bound of error.

1 3.9x10-3.9 2.9x10-32.9
2
3 x 10—34.4 x x 10—34.2 x
4 10-3 10-3
3.9 x 10-3 3.5x10-3
Example Boundoferror lIf - £l

n=128 , k=0 n=128, k=3

7. Conclusion

The present research solved an initial value problem by transformation into Volterra integral
equation of the second type. It was found that the numerical solution of these equations using the
expansion based on éeMBPFs would be better than the numerical solution of the Runge—Kutta of
the fourth—order method. Consequently, the results obtained in Tables 1—4 and bound of errors in
Table 5 confirmed that method is efficient.
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