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Abstract. The Hepatitis C virus, which is spread by infected people, was
studied using an epidemic model with the best control measures. In this work,
we evaluated the impact of several optimum control measures for preventing
the spread of Hepatitis C illness in the community using a deterministic
compartmental model. The qualitative behavior of the system is investigated
using the stability theory of differential equations. The state of endemicity is
used to determine the fundamental reproduction number that serves as the
epidemic indicator. For disease-free equilibrium, the prerequisites for both
local and global stability are created. It is shown that the endemic equilibrium
point is unique and that its global stability requirements are met. The model's
numerical simulation demonstrated that the community may effectively
eradicate Hepatitis C virus illness by implementing all intervention options.
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1. Introduction

The presence of inflammatory cells in the liver's tissue is a hallmark of hepatitis
(plural hepatitides), an inflammation of the liver [18]. Swelling and pain are
symptoms of liver inflammation. One of the five hepatitis viruses—hepatitis A,
hepatitis B, hepatitis C, hepatitis D, and hepatitis E—is most often responsible
for hepatitis. Contact with blood products is the most common way that hepatitis
C is transmitted [11]. Although blood products have been the primary means of
HCV transmission, transfusion and organ transmissions have decreased
significantly since 1992, when it became feasible to identify the virus in blood.
Unprotected intercourse and the exchange of infected needles between drug
users and people with other sexually transmitted diseases are the most frequent
ways that HCV is transmitted [19]. Additionally, some individuals get this virus
via tattoo and piercing parlors. Because HCV may be passed from mother to
child, it is also possible to have it at birth. Hepatitis C is an extremely prevalent
and sometimes lethal illness. An estimated 170 million persons worldwide are
expected to have HCV [10]. In underdeveloped nations, this virus is quite
prevalent. Prevalence varies by region in Egypt, ranging from 18 to 35%. Over
200,000 individuals are thought to have HCV, even in relatively wealthy nations
like Australia.

with approximately 150,000 having chronic HCV infection [6] (Figure 1).
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Figure 1. Global annual mortality from hepatitis, HIV, tuberculosis and malaria, 2000-2015.

HCYV is undoubtedly the most important cause of chronic Hepatitis. It has also been reported
to be associated with acute hepatitis, autoimmune chronic hepatitis, cirrhosis, and primary
hepatocellular carcinoma [16]. Because the infection becomes chronic in more than 80% of in
the infected people, the disease is an important public health and economic problem [3].

Different mathematical models have been developed to analyze the transmission dynamics
of HCV as well as the effectiveness of some intervention strategies against the spread of HCV
infections. For example, Martcheva and Castillo-Chavez considered a model of HCV with
chronic infectious stage in a varying population [9]. Their model was extended by Yuan and
Yang to include the latent period [20]. In particular, there have been studies of epidemiological
models where optimal control methods were applied. These include Kazeem Oare Okosun [14]
who studied SEITV (Susceptible, Exposed, Infected, Treated and Vaccinated) epidemic model
and applied stability analysis theory to find the equilibrium solutions and then used optimal
control to determine the optimal vaccination strategies to reduce acute and chronic stages in the
presence of treatment and infected immigrants. A similar study conduct was also conducted by
Neterindwa Ainea et al. without using optimal control strategies [1]. All of the above studies
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reveal an important result for HCV disease transmission dynamics by considering different
conditions. In this study, we will consider a PSIcIR (Protection, Susceptible, Carrier, Infected,
and Recovered) model for HCV. Our model is a modified and extended version of the model
presented in [13] with optimal control strategies for the control of the disease.

2. Description and formulation of model

The compartments used in this model consist of five classes: P #( ) is the compartment used for
those which are protected against the disease over a period of time. S #( ) is used to represent the

number of individuals that are prone to the disease at time ¢ [ #( ) denotes the number of
individuals who have been infected with the disease and are capable of spreading the disease to
those in the susceptible categories. /. ( )¢ denotes the number of individuals who are infected
with the disease and are capable of spreading the disease without showing any symptoms of the
disease. R #( ) denote the number of individuals who are recovered from the disease. Protected
individuals are recruited into the population at per capita rate (1-a) .A Susceptible individuals
are recruited into the population at per capita rate a/A. Susceptible individuals acquire typhoid
infection at per capita rate A. The susceptible class is increased by birth or emigration at a rate
of o/ and also from recovered class by losing temporary immunity with & rate and from
protected class by losing protection with y rate. A is the effective force of infection which is
given by A B B= (14+ 2C)/ N where B is effective contact rate of individuals with acute HCV
infected and [, is effective contact rate of individuals with chronic HCV infected. ¢ is the rate
at which acute infected individuals become chronically infected. i is the natural mortality rate,
d\ is the disease induced mortality rate due to acute infection, d is the disease induced mortality
rate due to chronic infection. B is the rate of treatment of chronically infected and joining
recovered class, O is the rate of treatment of acute infected and joining recovered class.

The acute infected subclass is increased from susceptible subclass by pA screening rate. The
chronic infected subclass is increased from susceptible subclass by (1-pA) screening rate.
Those individuals in the acute infected subclass can get treatment and join recovered subclass
with a rate of 86. And those individuals in the chronic infected subclass can get treatment and
join recovered subclass with a rate of . The recovered subclass also increases with individuals
who come from acute infected class by getting treatment with a rate of 6 and chronic infected
class by getting treatment with a rate of . In all the subclasses, [ is the natural death rate of
individuals, but in the acute infective class d; is disease induced death rate due to acute infection
and d- is the disease induced death rate due to chronic infection. The assumption of this model
is that there is re-infection once an individual is recovered (Figure 2).

(1-a)A X

Figure 2. Flow diagram of the model.
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The above model description can be written in five system of differential equation
below.

dP

= A +layOP, ()i

ds =N+ +aySPR - +(Ap)S, 2)

dt

d4  =p\$ 0S - + + +(di p) 4, (3)

dt

ac  _ _ _

o (1PA ) S+A4-+ +(Bd2p)C, “4)
t

dR

- =e 614 C_ Ra

i Budd+ C- +( )

®) /
where A B B= ( 14+ 2C) N is effective force of infection, P; is effective contact rate of
individuals with acute HCV infected and B, is effective contact rate of individuals with chronic

HCYV infected. Shortly we may write A € €= 14+ »C for the sake of simplicity,
where €, " Pyl and &, __ P\ then A € = 14+ ,C,NPSA CR= + + + + with initial conditions

P(0) = P, S(0) = So, A(0) = Ao, C(0) = Co, R(0) = Ro.

3. The model analysis

We assumed the initial condition of the model is non-negative, and now we will show that the
solution of the model is also positive.

3.1. Positivity of Solution

5
Theorem 3.1 Let Q={(PSACR,,,,)- + °~ 07 07 0~

A 0,C 0,R 0 then the solutions {P SA CR,,,,} are positive for ¢ > 0.
Proof From the system of differential equation, taking the first equation dP

=—-(laywA-(+)Pdt

dpP
=>="+(y WP (because (1-oc)Ax 0) dt dP
=2 H(y p)dr
-
dP
=[ — *f(yp+)at
P
=InP2- +(y Wt +C where C is integration constant
=P )= Pe VMM where (0)P= Po= Ci

S ()Pt20 forall £20.
From the second equation, we have dS
= A+ YySAUP + R - (+)Sdt
ds
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SZ8AUR - (+)S
dtdsS
S+ AUS+)S=Rdt

Using appropriate integrating factor ./ )4 and re-arranging we get
A O AD - +(Ap)t
()St>=_+080 - —_Oe au
0 opO
= liminf S#() 2 0

[— oo

S ()St=20 forall £20.

From the third equation, we have d4
=pA G OS —(+ + di +u) A dt
dA

=2>—(¢ 0+ + di +Y) A dtdA
=2>—(¢p 0+ + di +Y)dt A dA

= TG0+ +di+p)di
A

=>A>-(¢ 0+ + di +u)t +C, where C; is integration constant
= A1)z A T8l where 4 = 4(0) = &

W ()At=20 forall t>0.
From the fourth equation, we have
dc
T =—(1pAPP)S+A4- + +(du)Codt
dcC
= >= + +(Bdru)Cdt
dcC

= 2= (B+ dr +)dt ¢

dc
=>[_ >2-[(B+ dr+p) dr
C
= InC 2-(B+ do +)t +C; where Cj is integration constant
= Ct()2Ceq a2 where % = C(0) = G

~()Ct20 forall t>0.
From the fifth equation, we have
dR
=0 B4+ C - +(u &R dt

dR

=>=+(u &R dt
dR

=2— +(u 8)dt R

dR
=[] ==[(p&+)dtR
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=>InR2- +(ud)+Cy where C; is integration constant

=Rt )2 Re *WO where Ro= R(0) = C; .. ()Rt
> 0 forall 2 0.
This completes the proof of the theorem. B Therefore, the solution
of the model is positive.
3.2. Invariant region
Theorem 3.2 The total population size N of the system of model equations (1)-(5) is

bounded in the invariant region Q. That is, size of N #( ) is bounded for all . Proof In the
given model the total population (N) is

N=++++P S 4 C R.

Based on the techniques on [4] we differentiating N both sides with respect to t leads to
dN dP dS dA dC dR
T =%+ ++ . (O)dtdidtdidi dt

By substituting (1)-(5) into (6), we can get

dN
_=/\—|.,IN—(dA1 +9G). (7
dt
In the absence of mortality due to typhoid disease (i.e, di = =d 0), equation (7) becomes
dN

—_<A-pN, (8) dt
Rearranging and integrating both sides of (8), we get

dN
IA—#NSIw

-1
= __In(A-pN) < +¢t Cs  where Cs is integration constant

M
= A-In( uN) 2- +utr C¢  where Cs =—HCs

SA-UN > de™  where 4 = ¢
By applying initial condition N(0) = No, we get

A =/\—UN0
SA-UN =2 A=( PNy )e™™
_AOA=pNO O —pt )

=>N<-0O0epOp0O

0<N<d

As t — o0 in (9), the population size N — ,» which implies that i . Thus, the feasible

-

solution set of the model enters and remain in the region:
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Q={(PSACR,, , )7

Therefore, the basic model is well posed epidemiologically and mathematically. Hence, it is
sufficient to study the dynamics of the basic model in Q .

Lemma 3.1 (Existence of solution) Solutions of the model equations (1)-(5) together with the
initial conditions P(0) > 0, S(0) > 0, 4(0) > 0, C(0) > 0, R(0) > 0 exist in[I>+, i.e., the solution
of the model P #( ), S#(), A1), Ct()and R «() exist for all £ and will remain in ..

Proof The right hand sides of the system of equations (1)-(5) can be expressed as follows:

fPSACR(,, »o) == NA=+layp) x,
ﬁ(PSACRaaa:):/\-'- +ay6)\“PR_+()S’ﬁ’(PSACR””):p)\

4)65_ + + +(d||~J)A9ﬁ(PSACR7937) = _(1 p)\¢B)S+A_ + +(
b WC, f(PSACR,,,,)=0Budd+ C- +().R
According to Derrick and Grobsman theorem, let Q) denote the region

5
Q={(PSACR,, CERL <A 1y

/).
Then equations (1)-(5) have a unique solution if (3f; )/ (0x;), i j, =1,2,3,4,5 are continuous and

(

bounded in QO . Here, x; = Px,2=Sx,3=A4Ax,4= Cand x5 = R.

For f; : i 2 :I I
| Ve |
@) (@P) = - +(ypl <0, 1
(0f) (65) = <0 o, 2
() (04) = <0, (3f) (3C) = <0 o
. Lz
(3f1) (OR) = <0 oo. 2 |
| 7 | |
For f>: I - I
(3f) (0P) = y <<,
(3f) (35) = -\ p+) <co,
(0/) (04) = <0, (3f) (8C) = <0
() (OR) = & <co.
For f3:

(9f3) (3P) = <0 o,
(0£3) (0S) = pA< oo,
(0f3) (04) = (¢ B+ + d, +p)| <00,
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(0f3) (0C) = <0 oo, (0f3) (OR) = <0 oo.
For f3:
(0f3) (0 = <2P) 0
(0f2) (0 = =S)(1 pA) <o,
(0fa) (0 = <0A) &,
(0f2) (0 = = + +O)(B > IJJ<°°,
(3fi) (3 = <coR) 0
o | (51’5/(5 J <P)0
(0f5) (0 = <08) 0,
|(6f5)/(6 :|<loJ4)e,
| (0 (0 20lpkeo,
| 0 @ 4 L 4ru 6 <oo.

Thus, all the partial derivatives (9f;) (dxj), ij, =1,2,3,4 exist, continuous and bounded in Q .

Hence, by Derrick and Grobsman theorem, a solution for the model (1)-(5) exists and is unique.
|

3.3. Disease free equilibrium (DFE)

To find the disease free equilibrium we consider the steady state of the system (1)-(5) which is
(I-oy A= (+)P=0,ay
SAUA+ P+R-(+)S=0,
PAPOS —(++di+u) A =0, (10)
(I-pAPB)S+A4-(+d+p)C=0,6
Budd+C-(+)R=0.

Equating (10) at 4 = 0, C = 0 and solving the non-infected state variables. We get the following

From the first equation of (10), (1-ay p)A- ( + )P = 0. Solving for P we get
(1-a)A

pP=y+u
From the second equation of (10), &y 6 A yA+ P + R — ( + )S = 0. Solving for S we get
N +(y ap)
§= — .
y(+)
Therefore, the disease free equilibrium Ey becomes
O(-0A A +(yap) ]
Eo=0 , ,0,0,0 .o
Oy pppy+(+) a
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3.4. Endemic equilibrium point

To find the endemic equilibrium point £* we considered the steady state of the system (1)-(5) for
all state variables.
From the first equation of (10) we have

(I-A-+ayp) ( HP'=0
« (1= Ao
= =P
Yy B+
Let
y =EE1A+ 2C. (11)
From the third equation of (10) we have
PAPOS - + + +(d1 A" =0
S=peenia® +20(1-p ¢ O+ + di v pd)+ OO A o0
O g

3.5. Basic reproduction number(R,)

The basic reproduction number is the average number of secondary cases a typical infectious
individual will cause in a completely susceptible population [2]. In this section, we obtained
the basic reproduction number which is the threshold parameter that governs the spread of the
disease. For the given model the endemic equilibrium point E* exists in the feasible region D,
the necessary and sufficient condition is that:

0<S*<___ A+(yap)orequivalently A
+(y op) 21 ppy(+) puy(+)S

N +(y ap)
Define’ R =g ___ «, thus
MU Y( +)S
A+(yop) O P (+ do+puep dO)+o(1- )+ +di+pepd)+o0np
R= — ,upy(+) (6 O+ + di+u B)( + d2+p)
A +(y au) 0 3 €py(l-) epdy o2

AR =oppy(+)00( B+ + +dipB) + (+ +dpd 6) + (+ + +dip P)( + +dop'00.

Since ¢, = %VJ- and &, = the basic reproduction number on (23) becomes

o 0 —pB——  Bpti—)- Bod o
SR = O + + 0.
(My+ 0 B+ + +diuB) (+ +dopu G O)( + + +diu B)( + +d> 'O
Considering equation (23) above, we give interpretation of the basic reproduction number for
our model as follows.

When a single infective is introduced in a population with a probability p it is acute infected,
it makes B; contact per unit time. This is multiplied by the average infectious period 1(¢ 6+ +
+di M) fof acute infectious; with probability 1-p the infective is a chronic, and hence make [,
effective per unit time during the average time 1(B+ +d, M) it remains a chronic infected. This

n}lmber should be augmented by the number of infectious pp P2 ( + +d> Y) caused by this
20
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infective after it becomes acute infectious, with a probability ¢ ¢ O( + + +d p) to survive the
acute stage. Therefore, the expression in the square bracket in (23) is the per capita average
number of secondary infections. This number multiplied by the number of susceptible at disease

free equilibrium, A +(y au pu y)( +) gives Ro.
3.6. Local stability of disease-free equilibrium

Proposition 3.1 The disease free equilibrium point is locally asymptotically stable if R <o 1 and
unstable if R > 1.

Proof To proof the proposition we first construct a Jacobean matrix for the system (1)-

(5)atDFE 0 0 0 0 O
- HYH -y 0 0 O
&
D 0 _ ( d) e + + dl + “) O D
L 0 -B+aB g
0 0 S )))
J0=0 0 o
O 0 O
o o —(& u+)0o
oo o
Now we compute — +(y uA) 0 0 0 0 the Jacobean
matrix at disease -y - —uA 0 0 8 free equilibrium
and investigate its 0 0 0 0= stability effect due
to the reproduction 0 0 Ki-A¢ 0 number Ro.
From the Jacobean K> =\ 0’ matrix (28), we
obtain a characteristic
polynomial by evaluating det(Jgo
—Al)= 0 as follows.
0 0 06 B Kz-A

where Ki=— + + +(0 0 dip), Kr=— + +(B d> ) and K3 =— +(8 ). Therefore,
M==+(YHAPA D), 2=~ ,3==+ + +(B i), and
(K2 -M(K3 -=N) 0=AN-(K2+K3)A+KK23=0
By Routh-Huarth criteria
ar==((+5)=@+ 2+ud )+ (+) >0,
a =K% 3=+ +(BLudu)(+>) 0.
All the eigen values of the Jacobean matrix at disease free equilibrium point are strictly

negative. Therefore, the DFE point EFy is locally asymptotically stable if and only if R <o 1.
Hence the proposition is proved. [ ]

3.7. Global stability of disease free equilibrium
In this section, we analyze the global stability of the disease free equilibrium point by applying
the technique used in [12]. We write the model equation (1)-(5) in the form:
OdX;
O0dt = AX(s - XDFE s,)+ A X1 i,
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O

OdXi = 4 X2i ,

0o gt
where X; is the vector representing the non-transmitting compartment and X; is the vector
representing the transmitting compartments. The disease free equilibrium is globally
asymptotically stable if 4 has negative eigen values and A4, is a Metzler matrix (i.e., the off-
diagonal elements of 4, are non-negative).

For the model equation (1)-(5) we have X;= (P SR, , )T and X; = (4 C, )T, where the superscript
T refers to a transpose of the matrix.

We need to check whether a matrix A for non-transmitting compartments has real negative
eigen values and that 4> is Metzler matrix. From the equation for nontransmitting compartments
in the model we can get:

O-+(yud O 0 O
O OA=y-pd.

O O
Oo O 0 —(6u+)0o

From the matrix 4 above, we get the eigen values Ay pi =— +(), Ao =—and A & g3 =— +()
all are real and negative. This implies that the system
dX
— =AX(s-XDFEs, )+ A X1
idt
is locally and globally asymptotically stable at disease free equilibrium if 4, is Metzler matrix.

Using suitable rearrangement, we get
OpelS* —(d 6+ +d1 +u) pe2S* O 0do ooO

A, =0 pe G2Sx + (1-pg) 28« —(B+d2 +p)000 and A; =006 BO 0
.00g
oo

Since the off-diagonal elements of 4, are non-negative so A» is a Metzler matrix.

Hence, the DFE point is globally asymptotically stable.

Lemma 3.2 For R > 1, a unique endemic equilibrium point E” exists and no endemic otherwise.
Proof The endemic equilibrium point denoted by E* =(P §*,*, 4 C", *,R") and it occurs when the

disease persists in the community.

dA dc
For the discase to be endemic, > 0and __ > 0thatis:

dt dt
dA

T =pA GBS —(++di+u4d >0, (25 dt dC
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=-(1pAGP)S+4-++(  dp)C> (26)
0. dt

From inequality (26) we get
B+ +du)C< —=(1 pA ) S+ 4

(1-pA $) S+ 4 27
= <C
P+ dor+p
From inequality (25) we get
PAS
A< - (28)
¢ 0+ +d;+y
PAGS
=A<
¢ O+ + +di
4 OAGS (29)
= < B ;¥ P O(F F A FUPI(F a2 F1)
From (27) we have
(I-pAd)S+4 (1-pNS ¢4
C< = +
B+ o +p B+ G+ B+ h+p
(1-p\) S PAGS
< +
B+ do+pu B(+ do+u ¢ O)( + + di +)
eph(1-)S €PAPLS (30)
=5C < +

B+ da+uB(+ da+u dO) + + di +1)
From (28) we have

PAS
A<
¢ 0+ +di+y
__psy
=8A4< (31)
¢ 6+ + di +p
Combining (30) and (31) we get
peAl s epA(1-)S EPAG? S
€4+ ,C < + +
GO0+ +di+U P+ +UP(+ da+u O O) + + di +1)
Oepy €paAl-) epds O
=ASO + + O
Ood O+ +di +J B+dy +Y B( +dz2 +4 ¢ O)( + +d; +p)0p
Oep € paA(l-) epd2 a
23
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= <AASO + + O
Ood O+ + dy +u B+ da+u B(+ o+ & O)( + + &y +p)o0
Oep € paA(l-) epd2 0
= <150 + + O
Ood O+ +dy +u B+da + B( +dz2 +1 ¢ B)( + +d; +p)0o
A +(y o)
Since § < =S—_, we have pp y( +
)
A +(y o) O gp' ep*(1-) epd?’ O
I<TO+ + Oppy ¢8(+) 0o+ ¥di +u B+ +U B(+d2 +H ¢ O)( +
+d; +u)0o
=%Ro>1
Thus, a unique endemic equilibrium exists when R > 1. u

3.8. Global stability of endemic equilibrium point (EE)

Theorem 3.3 If R > 1, the endemic equilibrium point £ of the model is globally asymptotically
stable.

Proof To prove the global asymptotic stability of the endemic equilibrium point we use the

method of Lyapunov function. Define
*

® ok ok k%] * % pOQO ¥ % SO0 x %40
LPS(, ,AC, ,R)=0P-P-Pln _0+05-S-Sln_*00+A4-A4-Aln_*0
a pPOO sOon A0

+00C -C" -C'In_C+"% g+ R- R - R'In _ R~
O coo RO

By direct calculating the derivative of L along the solution of the system (1)-(5) we get dL O P
-P'0dPO0S-S0dS0A4-4"0dA0C-C'O0dCOR-R"0dR

T =00  +O O “+0 o ~— +0 0O  +O0 O
dt O P Odr O S Ode O A
Odr O C Odr O R O dt
opP-PO 0sS-s0
=0 O(l-ayWA-(+)1P+0— OfaySAYA+P+R-(+)]S
o P O o s O
04-4"0 oc-c'o
+00 OO00pA ¢ 6S —( + + dy +) AOO+0 CcO000(1-pA ¢ B) S+ A-( + db
+u)coo
O 4 O O

OR-RO
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+0 OB BudA+ C-(+)]R
O R O
dLd0 PO O s0o

= =O1- O(T=ay WA= (+) 1P +01- _OaySAPUA+ P+ R - (+)]1Sdt O
PO oso

O 40 0O COo

+ —01 __000pA ¢ 6S —( + + dy +y) ADO+01- __C O000(1-pA ¢ P) S+ A-(+ d>
+p)CO0

O AO00O¢*
O RO
+-01 _OBBpud4d+C-(+)]R
O RO
dL
= __=G-F
dt
where

G=+(YWP + +A WS + + + +(d O diy) 4" +(B+ +dou)C" + +(u S)R" and
=+ 5 +(—a)AL+(yP+SR) S+ pASAi+  —p AS+pAd S+ 04+ BC £,
dC [ I ]
Thus if G F< then dL dr </0. Noting that dL dt = 0Af and only it P = P*, S = S,
A=A4C=CandR=FR".
Therefore, the largest compact invariant set in Q={(P SA CR, , ,, )eQ:dL d/ = 0} is the
singleton E* by Lasalle invariant principle [5] it implies that the endemic equilibrium point is

globally asymptotically stable in Q if G < F. ]

4. Sensitivity analysis

The total human mortality and morbidity attributable to HCV disease can be best reduced by
investigating the relative importance of the parameters featuring in the basic reproduction
number. To determine how best we can do in order to reduce mortality and morbidity due to
HCV disease, it is crucial to know the relative importance of different factors responsible for
its transmission and prevalence.

Sensitivity analysis was carried out to determine the model robustness to parameter values.
This will help us in identifying and verifying model parameters that most influence the pathogen
fitness threshold for the pathogens. Further, values obtained for sensitivity indexes indicate
which parameters should be targeted most for intervention purposes. Sensitivity analysis of R
with respect to each parameter. The sensitivity analysis of the parameters can be calculated as
follows:

AT :a&x A =+
AR, .
. oM
m -0 7 041,
oy R,
25
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Similarly, we can get the sensitivity index of each parameter.

Table 1. Sensitivity index table.

Parameter Sensitivity Index
A +ve
Y +ve
el +ve
& +ve
¢ +ve
Y -ve
dl -ve
d2 -ve
5] -ve
B -ve

Table 1 shows the sensitivity indices of Ry to the parameter for HCV model, evaluated based
on the values on Table 2. The parameters are ordered from the most sensitive to least
sensitive. This result shows that, when the parameters values of A, y, €, & and ¢ increases
while the other are kept constant they increase the value of Ry which implies they increases
the endemicity of the disease. Whereas the parameters [, di, d», Oand B decrease the value of

Ro while the other are kept constant which implies they decrease the endemicity of the

disease.
Table 2. Parameter values for typhoid fever model.
Parameter Parameter description Value  Source
symbol

A Recruitment rate 100 [1]

o Proportion of susceptible individuals at birth 0.1 Assumed

u Natural mortality rate 0.0004 [1]

dl The d}sease induced mortality rate due to acute 0.03 Assumed
infection

D The d}sease induced mortality rate due to chronic 0.05 Assumed
infection

B, Effectlve contact rate of individuals with acute 0002  Assumed
infected
Effective contact rate of individuals with chronic

B, HCV infected 0.001 Assumed

0 The p.robablllty at which the susceptible joining into 0.65 Assumed
acute infected

Y Rate of loss of protection 0.35 Assumed

B TFI'le’ rate of treatment of chronically infected and 0.3 Assumed
joining recovered class

5 Removal rate from recovered subclass to susceptible 0.05 (1]

subclass
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The rate of treatment of acute infected and joining 023
recovered class ’
The rate at which acute infected individuals become

¢ chronically infected 0.05 (1]

(1]

5. Extension into an optimal control

In this section we apply optimal control method for the system (1)-(5) by using Pontryagin’s
maximum principle. The optimal control model is an extension of HCV model by incorporating
the following three controls mentioned below.

1. u; is the prevention effort, that protect susceptible from contracting the
disease.
1. uy is the treatment used for acute infected individuals. iii. u3 is the treatment

used for chronic infected individuals.

After incorporating w1, u» and u3 in HCV model (1)-(5), we get the following optimal model of
HCV disease.

OdpP
Odt=-(1ay WA= (+)P,

O

00%gr = A+oy 8P + R — —(lu)\ uS - S,
0
Oda
O=p(1-")A BS —( +2) 4= (1 “)pA~ (4 +p) A4, (36)
Odr
0dC
o= —(1p) I(—u)AS + (1 u2)§ BA-( +u3)C —(d> +H)C,

0
O dt
OdR
o0a =(0+u2) A+(B+u3)C - (U &+ ) .R

The control functions,u #( ), u t>( ) and u t3( ) are bounded, Lebesgue integrable functions, which
is defined as

U={wtututi(),20),30):0<uti()<1,0<un()<1,0<un() <1,0 < T}
Our aim is to obtain a control U, and PS4 C,,, and R that minimized the proposed objective

function J and the form of objective functional is taken in line with the literature on epidemic
model [17], given by:

tfO 13 20
J=minl 23 [000b Al +b C2 + 2 Yi=1 wui i 00dt, B7) v u, ,u

where by, b, and w; are positive. The expression 1, wu; ? represents costs which is associated with

the controls u; and ¢ ris the final time. The coefficients are balancing

cost factors. Now we seek to find an optimal triple control #1» > and u3", such that
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J(u: u, H;): {-](“1 Uy uy) Uy Uy Uy EU}” min
R (38)

where U ={J (u1,u us, 3)} is a measurable set and t€[0,’ /] for the control set.

5.1. Existence of an optimal control

The necessary condition that an optimal solution must satisfy comes from maximum principle
[15]. The existence of an optimal control pair can be proved by using the results [4].

The system of equation (1)-(5) is bounded by a linear system for a finite time interval so
that the existence of linear system is guaranteed [4, Theorem 4.1, p68-69] (see the detail of the
proof).

For the optimal control problems, we need to check the following properties are satisfied.
(1) The set of controls and corresponding state variables is non-empty.
(2) The control set U is convex and closed.
(3) The RHS of the state system (1)-(5) is bounded by a linear function in the state and control.
(4) The integrand of the objective functional is concave on U.
a

(5) The function is bounded below by az — a u1 ( 1% +us? +u3?)?> where a; > 0, a2 > 0 and o> 1.

The existence result in [8, 1982, Theorem 9.2.1, p 182] for the system (1)-(5) with bounded
coefficients is used to satisfy condition 1. The control set U is convex and closed by definition.
The RHS of the state system (1)-(5) satisfies condition 3 as the state solutions are a priori

3 ? bounded. The integrand in the objective | + , + éz functional 5 A4
bC - wu; i is clearly
i=1
concave on U. Finally, therearea 1> 0> 2 >0 a and o> 1 satisfying
3 a
b A+b,C+ l > wul <a, -a, (uf s s )_ 2.
2 =1

because the state variables are bounded. Hence, there exist an optimal control (u u ui, 2, 3) that
minimize the objective functional, J v u u( 1, 2, 3).

5.2. Hamiltonian and optimality system

The necessary condition for the optimal pair is obtained using the “Pontryagin’s maximum
principle” ([15]). Therefore, using this principle, we get a Hamiltonian which is defined as
dP ds dA dc dR

HPSACRK,, T, T )=TACuuud, .,
25 35 )+)\1 +)\2 +)\3 +)\4
+ , dt dt dt dt
dt
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13 2where LACuuut(, ,1,2,3)=0b

Ar+b G+ 2 Yi=iwu; ;, and %, is adjoint variable to be determined suitably by using
Pontryagin’s maximum principle.
Theorem 5.1 For an optimal control set u1, > and u3 that minimizes J over U there are an adjoint
variables AA Ay, »,..., s such that

Od\

Odf =Ay p Ayl (ul +)- 2 ul,

O

00N =\ 0o+ =(1  w)(€ €14+ ,C)n0-Aps (1-u1)(€ €14+ 2C) &
O

o MPy(1-) 1(—w)(E5A4+ 2C),
O0% @'\ =— +b1 % (1—ug) P48 = 3001 (1-u1)S =(0+u2)— —(luz)d—(dy +p)od  (39)
|
O A Oo(1-p) 1( —1)51S + —(1 u2)d A OpO- 5 ( +uz),
]

Ot
Odt =— +b2 A2 (1-ul)e2S ~Ape3 2 (1-u1)S —A4 OO(1-pg) 2 (1-ul)S
|
O —(u3+ +B da+p A B)0o- 5 ( +us),
]

000 dgAS =-A8& A p & — s( + ), with transversality conditions A; (¢ s) = 0, i =1,2,...5.

Furthermore, we obtained the control set (u u ui", »*, 3*) characterized by OH/ Ou;” = 0 for i

=1,2,3. Hence we obtain

utr - { ( C’l)}(

) max 0,min 1, ,ut
: = { (‘72)}()
max 0,min 1, ,ut

o= ( ‘73)}()

max 0,min 1, ,
where
oAl =00 1yP + S(e €14+ 2C)(-AAp A P2 + 3 + 4(1- ))DEI/wl ,
02 = AP Ao A3(1- ~)4 - 57 w2,
ando3 =cAM -5 )/w3.
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Proof The adjoint variables and transversality conditions are standard results of Pontryagin’s
maximum principle. To obtain the adjoint equations we differentiate the Hamiltonian H with

respect to the state variables PSA C, , , and R respectively and then we obtain dA1 0H
T == =AYy MAYL (ul +)-
2ul,dt 0P d\2 O0H

dr=- 05 =Ap2 00 + (1 ul)(el4+2C)00-Ap3 (1-ul)(el4+€2C)

“M(1-p) 1( —u1)E14+5C), dA\3 OH
—=—  =—+bMl-u)ehpeS- O
at 04 o2 11 30 1(1-w1)S —(B+u2)— —(1 wo)d—(di +W)0n

A Oo(1-p) 1( —u1 1)eS + —(1 uz)p A BpO~ s5( +u2), dA4

=— =— +b A (1-u)e A\peS - (I-u)S-A0
dt oC 2 2 1 2 3 2 1 4 0(1-pg) 2(1-ul)S

—(us + +B dy +p A B)Oo— s( + u3), dAS
o0H
C A A G—s(+).

dt OR
Again using the method of Pontryagin et.al [15], we obtain the controls by solving

0 6/=H ui” 0fori=1,2,3 then

ul* =00A1yP + S(e €14+ 2C)(-AAp A P2 + 3 +4(1- ))DEI/wl , u2* =

AN G Ap A3(1-) -4 - 5]/w2, u3* = c(A M - 5)/w3 .
Thus, writing 11", u2” and u3” using standard control arguments involving the bounds on
the controls, we conclude

0o if %<0, u’ 0o if %<0, w" 0o if 03<0, wy
=900, if 0 <o <1, =0, if 0 <0os <1, =0%s; if 0 <03 <1,

01 if o1 21. 01 if op21. 0

n| O ol if %21

This implies
u;" = max O,min 1,{ ( o1)},
uy" = max 0,min 1,{ (02)},
u3" = max O,min 1,{ (03)},

The optimality system is formed from the optimal control system and the adjoint variable
system by incorporating the characterized control set and initial and transversality condition.
Odp
Odt=-(1ayA-uP)—-pP,

O
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004577 = A+ yu Py +8R — —(1 up)A pS — S,
O

Ddd = 5(1-11 )N BS =( +u2) A= —(1 w2)pA—(dy +1) 4,
Ot
Bdc
O=-(1p) 1( —w)AS + =(1 u2)d BA-( +u3)C —(d2 +1)C,
O dt
"R _
O=0+uz) A+(B+u3)C - (4 &+ )R,
Ddr_
OdAl
O=Ay p Ayl (ul +)-2ul,
O dt (40
O

O0dA2 =A p2 00 + —(1 ul )(€ €14+ 20)00-Ap3 (1-ul )(€ €14+ 2C) ) dt

]

o Pa(1-) 1( —u)(E54+ 20),

OdAs
N =— +b M (1= )EMPS = 3001 (1-u1)S —(O+uz ) - —(1 u
Yd—(di +p)old &

O

oo =%, Oo(1-p) 1( —u1 )5S + —(1 u2)d A O00— 5 ( +uz),

OdAs

Odt=— +b2 N2 (1-ul )e Ap€2S — 3 2 (1-ul)S —A4 OO(1-pe) 2 (1-ul

)S

u|

O —(us+ +B d>+p)0n,

O

T 0O = AS Ap &y - s(+ ),

such that A; (t /)= 0, i =1,2,...,5, P(0) = "o, S(0) = 5, A(0) = 4o, C(0) = C and
R(0) = Ro. m

6. Numerical simulations

In the present work, we have used PSACR epidemic model with control measures. The
simulations are carried out in order to explore the impacts of control measures on the HCV
disease dynamics. Following parameter values are used in the model for simulation purpose

A=100, o= 0.1, u= 0.004, d) = 0.03, d» = 0.05, B1 = 0.002, B, = 0.001, p=165, y= 0.35,
B= 0.3, 8= 0.05, 6= 0.23, = 0.05, T = 6, b; =100, by = 50, wy = 2,
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Wy = 3, w3 = 5,
and initial values P(0) = 200, S(0) = 600, A4(0) =180, C(0) =120, R(0) = 200.

The optimal control solution is obtained by solving the optimality system (40), which
consists of the state system, the adjoint system and transversality condition. To solve the state
system we use a forward fourth-order Runge-kutta method and solve the adjoint system using
a backward fourth-order Runge-Kutta method. The solution iterative scheme involves making
a guess of the controls and solves the state system using forward fourth order Runge-Kutta
scheme. Due to the transversality conditions, the adjoint equations are then solved by the
backward fourth-order Runge-Kutta scheme using the current iterations solutions of the state
equations. The controls are then updated using a convex combination of the previous controls
and the values obtained using the characterizations. The updated controls are then used to repeat
the solution of the state and adjoint systems. This process is repeated until the values in the
current iteration are close enough to the previous iteration values [7].

In this section we investigate numerically the effect of the following optimal control
strategies on the spread of the disease in a population.

1. Using prevention effort (u;), that protect susceptible from contracting the disease (u2 = 0
and u3 = 0) .

ii. Using treatment effort (u2) for acute infected individuals(u; = 0 and u3 = 0). iii. Using
treatment effort (u3) for chronic infected individuals (u; = 0 and u, = 0). iv. Using prevention
(u1) for susceptible and treatment (i ) for acute infected individuals (u3 = 0).

v. Using prevention (u1) for susceptible and treatment (u3) for chronic infected individuals (u
= 0).

vi. Using treatment (u>) for acute and treatment (u3) for chronic infected individuals
(u1=0).

vii. Using all the three controls, prevention effort (u1), treatment effort (u> ) and treatment effort

(3).

6.1. Control with prevention only

In Figure 3, we observe that due to the implementation of prevention effort on susceptible
population the proportion of acute and chronic infected population decreases as compared with
the case without control. This implies prevention minimizes the rate of joining individuals in to
acute and chronic compartments. Thus, we can deduce that optimized prevention reduces the
burden of the both acute and chronic infection of HCV.
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Figure 3. Simulation of optimal control with prevention only.
6.2. Controls with only treatment for acute infected population(uz)

The HCV treatment control u, (treatment given for acute infected population) is used to
optimize the objective functional J; the other controls (u; and u3) relating to HCV are set to
zero. From Figure 4 it is observed that the acute infected population decreases with time since
some of the acute infected population are recruited for treatment and remaining joins the
chronic infected class. As the rate of control (u2) increases, the acute infected population
decreases with time leading to the decrease of chronic infected population. As a result it is
possible to say applying a control measure on acute infected population leads to a faster
reduction of proportion of both acute and chronic infected population as compared to the case

without applying the control measure.
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Figure 4. Simulation of optimal control with treatment for acute infectious only.
6.3. Controls with treatment only for chronic infected population(us)

The HCV treatment control uus is used to optimize the objective functional J; the other controls

(u1 and u») relating to HCV are set to zero. From Figure 5 we observe that initially the control
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u3 has no effect on the dynamics of chronic infected population. In the mean time the proportion
of chronic infected population decrease with time leading to faster declining of chronic infected

population.
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Figure 5. Simulation of optimal control with treatment for chronic infectious only.

6.4. Controls with prevention and treatment for acute infected population(u and u, 2)

The HCV treatment controls u; and u» are used to optimize the objective functional J; the other
control u3 relating to HCV is set to zero. We observe from Figure 6 that this strategy shows
there is a significant effect in reducing the proportion of both acute and chronic infected
population in than the previous strategies. This situation occurred due to the fact that the control
11 minimizes both acute and chronic infected population which will join both compartments
whereas the control u, minimizes the proportion of acute infectious population as a result the

chronic infectious population will be minimized.

180 120

160

) .
S =)
! !
=3
=3
!

» @
s 3
! !
o »
=) =3
L L

o
=3
!

Acute Infectious Population
.
o
I

Clwonic infectious Population

'S
=
!

(%)
=)
!

T T T T T T T T
0 2 10 12 0 1 2 5 6

3
Time(Months)
ul=0, w2=0, ui=0]

4 6 8
Time (Months)

ul=0, w=0, u3=0] [

ul=0, u2=0, u3=0 ul=0, u2=0, u3=0

Figure 6. Simulation of optimal control with prevention and treatment for acute infectious.
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6.5. Controls with Prevention and treatment for chronic infected population(u and u1  3)

The HCV treatment controls #; and u3 are used to optimize the objective functional J; the other
control u, relating to HCV is set to zero. We observe from Figure 7 that this strategy shows
there is a higher reduction of the proportion of population of chronic infected population than
the acute infectious population.
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Figure 7. Simulation of optimal control with prevention and treatment for chronic infectious.

6.6. Controls with prevention and treatment for chronic infected population (u and u»

3)

The HCV treatment controls u, and u3 are used to optimize the objective functional J; the other
control u; relating to HCV is set to zero. We observe from Figure 8 that this strategy shows
there is only a slight variation as compared to the case without control. This occurred due to the
fact that the higher recruitment rate of susceptible populations to both acute and chronic

compartments.
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Figure 8. Simulation of optimal control with treatment for acute and chronic infectious.
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6.7. Controls with prevention(u1), treatment(uz), and treatment(us)

Here we used all the three intervention strategies which enable to minimize the objective
functional J. We observe from Figure 9 that the proportion of both acute and chronic infectious
population vanishes rapidly before the specified time. Therefore, applying this strategy helps
to eradicate HCV from the population.
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Figure 9. Simulation of optimal control with all the three strategies.

7. Discussions and conclusions

In this study a deterministic mathematical model of HCV consisting acute and chronic stages
with optimal control strategies has been established. The model incorporates the assumption
that all populations are equally susceptible. Both qualitative and numerical analysis of the
model was done. We have shown that there exists a feasible region where the model is well
posed and biologically meaningful in which a unique disease free equilibrium point exists. The
steady state points were obtained and their local and global stability conditions were
investigated. The model has a unique disease free equilibrium if B <o 1 and has endemic

equilibrium if R >¢ 1. Sensitivity analysis of the model was done. It was observed that mortality
rate has higher impact in minimizing the burden of the disease when the parameter increases
which is not biologically reasonable to use it as a control mechanism.

For the given model an optimal control problem is formulated by incorporating different
control strategies. The optimality condition was established by Pontryagin’s maximum
principle. A numerical simulation of the model was conducted and different combinations of
control strategies were compared. It was observed that prevention has a significant impact in
minimized the burden of the disecase. It was also shown that treatments given for acute and
chronic infected population minimizes the burden of the disease. Finally, it was observed that
applying all the three control strategies eliminate HCV disease from the population.
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