
International Journal of Mathematical Modelling and Computation 

Vol 1, Issue 1 2025 

 

12 

Mathlogix publications 

 
 

 

  

Hepatitis C Virus Transmission Dynamics Mathematical Model with the 

Best Control Strategies 
  

M. Shnute Wameko 

   

Department of Mathematics, Wollega University, Nekemte, Ethiopia.  

 

 

 

Article Info 

      
  Received: 28-03-2025        Revised:06-04-2025          Accepted:17-04-2025      Published:28-04-2025 

 

  

Abstract. The Hepatitis C virus, which is spread by infected people, was 

studied using an epidemic model with the best control measures. In this work, 

we evaluated the impact of several optimum control measures for preventing 

the spread of Hepatitis C illness in the community using a deterministic 

compartmental model. The qualitative behavior of the system is investigated 

using the stability theory of differential equations. The state of endemicity is 

used to determine the fundamental reproduction number that serves as the 

epidemic indicator. For disease-free equilibrium, the prerequisites for both 

local and global stability are created. It is shown that the endemic equilibrium 

point is unique and that its global stability requirements are met. The model's 

numerical simulation demonstrated that the community may effectively 

eradicate Hepatitis C virus illness by implementing all intervention options. 
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1. Introduction  

The presence of inflammatory cells in the liver's tissue is a hallmark of hepatitis 

(plural hepatitides), an inflammation of the liver [18]. Swelling and pain are 

symptoms of liver inflammation. One of the five hepatitis viruses—hepatitis A, 

hepatitis B, hepatitis C, hepatitis D, and hepatitis E—is most often responsible 

for hepatitis. Contact with blood products is the most common way that hepatitis 

C is transmitted [11]. Although blood products have been the primary means of 

HCV transmission, transfusion and organ transmissions have decreased 

significantly since 1992, when it became feasible to identify the virus in blood. 

Unprotected intercourse and the exchange of infected needles between drug 

users and people with other sexually transmitted diseases are the most frequent 

ways that HCV is transmitted [19]. Additionally, some individuals get this virus 

via tattoo and piercing parlors. Because HCV may be passed from mother to 

child, it is also possible to have it at birth. Hepatitis C is an extremely prevalent 

and sometimes lethal illness. An estimated 170 million persons worldwide are 

expected to have HCV [10]. In underdeveloped nations, this virus is quite 

prevalent. Prevalence varies by region in Egypt, ranging from 18 to 35%. Over 

200,000 individuals are thought to have HCV, even in relatively wealthy nations 

like Australia. 
 

with approximately 150,000 having chronic HCV infection [6] (Figure 1).   

  

Figure 1. Global annual mortality from hepatitis, HIV, tuberculosis and malaria, 2000-2015.  

HCV is undoubtedly the most important cause of chronic Hepatitis. It has also been reported 

to be associated with acute hepatitis, autoimmune chronic hepatitis, cirrhosis, and primary 

hepatocellular carcinoma [16]. Because the infection becomes chronic in more than 80% of in 

the infected people, the disease is an important public health and economic problem [3].  

Different mathematical models have been developed to analyze the transmission dynamics 

of HCV as well as the effectiveness of some intervention strategies against the spread of HCV 

infections. For example, Martcheva and Castillo-Chavez considered a model of HCV with 

chronic infectious stage in a varying population [9]. Their model was extended by Yuan and 

Yang to include the latent period [20]. In particular, there have been studies of epidemiological 

models where optimal control methods were applied. These include Kazeem Oare Okosun [14] 

who studied SEITV (Susceptible, Exposed, Infected, Treated and Vaccinated) epidemic model 

and applied stability analysis theory to find the equilibrium solutions and then used optimal 

control to determine the optimal vaccination strategies to reduce acute and chronic stages in the 

presence of treatment and infected immigrants. A similar study conduct was also conducted by 

Neterindwa Ainea et al. without using optimal control strategies [1]. All of the above studies 
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reveal an important result for HCV disease transmission dynamics by considering different 

conditions. In this study, we will consider a PSIcIR (Protection, Susceptible, Carrier, Infected, 

and Recovered) model for HCV. Our model is a modified and extended version of the model 

presented in [13] with optimal control strategies for the control of the disease.            

2. Description and formulation of model  

The compartments used in this model consist of five classes: P t( ) is the compartment used for 

those which are protected against the disease over a period of time. S t( ) is used to represent the 

number of individuals that are prone to the disease at time t. I t( ) denotes the number of 

individuals who have been infected with the disease and are capable of spreading the disease to 

those in the susceptible categories. Ic ( )t denotes the number of individuals who are infected 

with the disease and are capable of spreading the disease without showing any symptoms of the 

disease. R t( ) denote the number of individuals who are recovered from the disease. Protected 

individuals are recruited into the population at per capita rate (1−α) .Λ Susceptible individuals 

are recruited into the population at per capita rate αΛ. Susceptible individuals acquire typhoid 

infection at per capita rate λ.  The susceptible class is increased by birth or emigration at a rate 

of αΛ and also from recovered class by losing temporary immunity with δ rate and from 

protected class by losing protection with γ rate. λ is the effective force of infection which is 

given by λ β β= ( 1A+ 2C) N where β1 is effective contact rate of individuals with acute HCV 

infected and β2 is effective contact rate of individuals with chronic HCV infected. ϕ is the rate 

at which acute infected individuals become chronically infected. µ is the natural mortality rate, 

d1 is the disease induced mortality rate due to acute infection, d2 is the disease induced mortality 

rate due to chronic infection. β is the rate of treatment of chronically infected and joining 

recovered class, θ is the rate of treatment of acute infected and joining recovered class.   

The acute infected subclass is increased from susceptible subclass by ρλ screening rate. The 

chronic infected subclass is increased from susceptible subclass by (1−ρλ)  screening rate. 

Those individuals in the acute infected subclass can get treatment and join recovered subclass 

with a rate of 𝜃𝜃. And those individuals in the chronic infected subclass can get treatment and 

join recovered subclass with a rate of β. The recovered subclass also increases with individuals 

who come from acute infected class by getting treatment with a rate of θ and chronic infected 

class by getting treatment with a rate of β. In all the subclasses, µ is the natural death rate of 

individuals, but in the acute infective class d1 is disease induced death rate due to acute infection 

and d2 is the disease induced death rate due to chronic infection. The assumption of this model 

is that there is re-infection once an individual is recovered (Figure 2).   

  

Figure 2. Flow diagram of the model.  
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The above model description can be written in five system of differential equation  

below.  

  

  

dP 

= − Λ− +(1 α γ µ) ( )P,   (1) dt 

  

= Λ+ +α γ δPR − +(λ µ)S,   (2)  

  

=ρλ ϕ θS − + + +(d1 µ) A,   (3)  

  

= −(1 ρλ ϕ) S + A− + +(β d2 µ)C,   (4)  

  

=θ β µ δA+ C − +( )R,  

 (5)  

where λ β β= ( 1A+ 2C) N  is effective force of infection, β1 is effective contact rate of 

individuals with acute HCV infected and β2 is effective contact rate of individuals with chronic 

HCV infected. Shortly we may write λ ε ε= 1A+ 2C for the sake of simplicity,  

where ε1 
= β

N
1 and ε2 

= β
N

2 then λ ε ε= 1A+ 2C, N P S A C R= + + + + with initial conditions 

P(0) = P0, S(0) = S0, A(0) = A0, C(0) = C0, R(0) = R0.   

3. The model analysis  

We assumed the initial condition of the model is non-negative, and now we will show that the 

solution of the model is also positive.  

3.1. Positivity of Solution  

Theorem 3.1 Let Ω={(P S A C R, , , , )  R : P 0,S 0, 

A 0,C 0,R 0 then the solutions {P S A C R, , , , } are positive for t ≥ 0.  

Proof  From the system of differential equation, taking the first equation   dP 

    = −(1 α γ µ)Λ− ( + )P dt 

dP 

⇒≥− +(γ µ)P               (because  (1−α)Λ≥ 0) dt dP 

⇒≥− +(γ µ)dt 

P 

dP 

 ⇒∫ ≥−∫(γ µ+ ) dt   

P 

⇒ ln P ≥− +(γ µ)t +C1        where  C1 is integration constant 

 ⇒ P t( ) ≥ P e0 
− +(γ µ)t                where  (0)P = P0 = C1 

∴  ( )P t ≥ 0   for all  t ≥ 0. 

From the second equation, we have dS 

    = Λ+α γ δ λ µP + R − ( + )S dt 
dS 

dS 

dt 

dA 

dt 

dC 

dt 

dR 

dt 
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⇒≥δ λ µR − ( + )S

  dt dS 

⇒+ (λ µ δ+ )S ≥ R dt 

Using appropriate integrating factor e
∫(λω+ ) dt and re-arranging we get  

 Λ  Λ  − +(λµ)t 

     ( )S t ≥ + S0 − e αµ 

 αµ  

 ⇒ liminf S t( ) ≥ 0    

t→∞ 

 ∴  ( )S t ≥ 0  for all   t ≥ 0. 

From the third equation, we have dA 

     =ρλ ϕ θS −( + + d1 +µ) A dt 

dA 

⇒≥−(ϕ θ+ + d1 +µ) A dt dA 

⇒≥−(ϕ θ+ + d1 +µ)dt A dA 

 ⇒∫ ≥−∫(ϕ θ+ + d1 +µ) dt   

A 

 ⇒ ln A≥−(ϕ θ+ + d1 +µ)t +C2  where C2 is integration constant  

 ⇒ A t( ) ≥ A e
0 

− + + +(ϕθ µd1 )t                    where A0 = A(0) = C
2 

 ∴  ( )A t ≥ 0  for all   t ≥ 0. 

From the fourth equation, we have  

dC 

= −(1 ρλ ϕ β) S + A− + +( d2 µ)C dt 

dC 

⇒ ≥− + +(β d2 µ)C dt 
dC 

⇒ ≥−(β+ d2 +µ)dt c 

dC 

 ⇒∫ ≥−∫(β+ d2 +µ) dt   

C 

 ⇒ lnC ≥−(β+ d2 +µ)t +C3  where C3 is integration constant  

⇒ C t( ) ≥ C e
0 

− + +(β d2 µ)t                 where C0 = C(0) = C
3 

 ∴ ( )C t ≥ 0  for all  t ≥ 0. 

From the fifth equation, we have  

 dR 

    =θ βA+ C − +(µ δ)R dt  

 dR 

⇒≥− +(µ δ)R dt  
 dR 

⇒≥− +(µ δ)dt R 

   dR 

⇒∫ ≥−∫(µ δ+ ) dt R 
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   ⇒ ln R ≥− +(µ δ)t +C4    where C4 is integration constant  

 ⇒ R t( ) ≥ R e0 
− +(µδ)t              where R0 = R(0) = C3  ∴ ( )R t 

≥ 0 for all  t ≥ 0.  

This completes the proof of the theorem.                                               ◼ Therefore, the solution 

of the model is positive.  

3.2. Invariant region  

Theorem 3.2 The total population size N of the system of model equations (1)-(5) is 

bounded in the invariant region Ω. That is, size of N t( ) is bounded for all t.  Proof  In the 

given model the total population (N) is  

 N = + + + +P S A C R.  

Based on the techniques on [4] we differentiating N both sides with respect to t leads to  

 dN dP dS dA dC dR 

= + + + + . (6) dt dt dt dt dt dt 

By substituting (1)-(5) into (6), we can get  

dN 

 =Λ−µN −(d A
1 + d C

2 ).  (7)  

dt 

In the absence of mortality due to typhoid disease (i.e, d1 = =d2 0 ), equation (7) becomes  

dN 

≤Λ−µN,  (8) dt 

Rearranging and integrating both sides of (8), we get  

  dt  

−1 

  ⇒ ln(Λ−µN) ≤ +t C5  where C5 is integration constant  

µ 

  ⇒ Λ−ln( µN) ≥− +µt C6     where C6 =−µC5  

  ⇒Λ−µN ≥ Ae−µt  where A = eC6  

By applying initial condition N(0) = N0, we get  

       A =Λ−µN0    

  ⇒Λ−µN ≥ Λ−( µN0 )e
−µt    

  Λ Λ−µN0  −µt 

⇒ N ≤ −  e µ  µ  

(9)  

  

As t →∞ in (9), the population size N → µ
Λ which implies that  . Thus, the feasible 

solution set of the model enters and remain in the region:  



 International Journal of Mathematical Modelling and Computation 

Vol 1, Issue 1 2025 

 

18 

Mathlogix publications 

 

 Ω={(P S A C R, , , , )  R : N

 .  

Therefore, the basic model is well posed epidemiologically and mathematically. Hence, it is 

sufficient to study the dynamics of the basic model in Ω .  

Lemma 3.1 (Existence of solution) Solutions of the model equations (1)-(5) together with the 

initial conditions P(0) > 0, S(0) > 0, A(0) > 0, C(0) > 0, R(0) > 0 exist in 5
+,  i.e., the solution 

of the model  P t( ), S t( ), A t( ), C t( ) and R t( ) exist for all t and will remain in 5
+.  

Proof  The right hand sides of the system of equations (1)-(5) can be expressed as follows:  

   f P S A C R1( , , , ,) = − Λ− +(1 α γ µ) ( )P ,  

 f2(P S A C R, , , , ) = Λ+ +α γ δ λ µP R − +( )S,  f3(P S A C R, , , , ) =ρλ 

ϕ θS − + + +( d1 µ) A,  f4(P S A C R, , , , ) = −(1 ρλ ϕ β) S + A− + +( 

d2 µ)C,  f5(P S A C R, , , , ) =θ β µ δA+ C − +( ) .R  

According to Derrick and Grobsman theorem, let Ω denote the region   

 Ω={(P S A C R, , , ,)  : N (

 / ) .  

Then equations (1)-(5) have a unique solution if (∂fi ) (∂xj ), i j, =1,2,3,4,5 are continuous and 

bounded in Ω . Here, x1 = P x, 2 = S x, 3 = A x, 4 = C and x5 = R.   

For f1 :   

   (∂f1) (∂P) = − +(γ µ) <∞,  

   (∂f1) (∂S) = <0 ∞,  

  (∂f1) (∂A) = <0 ∞,   (∂f1) (∂C) = <0 

∞,  

   (∂f1) (∂R) = <0 ∞.  

For f2 :   

   (∂f2 ) (∂P) = γ <∞,  

   (∂f2 ) (∂S) = −(λ µ+) <∞,  

  (∂f2 ) (∂A) = <0 ∞,   (∂f2 ) (∂C) = <0 

∞,  

   (∂f2 ) (∂R) = δ <∞.  

For f3 :   

   (∂f3) (∂P) = <0 ∞,  

   (∂f3) (∂S) = ρλ<∞,  

   (∂f3) (∂A) = −(ϕ θ+ + d1 +µ) <∞,  
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  (∂f3) (∂C) = <0 ∞,   (∂f3) (∂R) = <0 ∞.  

For f4 :   

   (∂f4) (∂ = <∞P) 0 ,  

   (∂f4) (∂ = −S)(1 ρλ) <∞,  

   (∂f4) (∂ = <∞A) ϕ ,  

   (∂f4) (∂ = − + +C)(β d2 µ)<∞,  

   (∂f4) (∂ = <∞R) 0 .  

For f5 :   

   (∂f5) (∂ = <∞P) 0 ,  

   (∂f5) (∂ = <∞S) 0 ,  

   (∂f5) / (∂ = <∞A) θ ,  

   (∂f5) (∂ =C) β<∞,  

   (∂f5) (∂ = − +R)(µ δ) <∞.  

Thus, all the partial derivatives (∂fi ) (∂xj ), i j, =1,2,3,4 exist, continuous and bounded in Ω . 

Hence, by Derrick and Grobsman theorem, a solution for the model (1)-(5) exists and is unique.                                                                          

◼  

3.3. Disease free equilibrium (DFE)  

To find the disease free equilibrium we consider the steady state of the system (1)-(5) which is  

(1−α γ µ)Λ− ( + )P = 0, α γ 

δ λ µΛ+ P + R − ( + )S = 0, 

 ρλ ϕ θS −( + + d1 +µ) A = 0,   (10)  

(1−ρλ ϕ β) S + A−( + d2 +µ)C = 0, θ 

β µ δA+ C − ( + )R = 0. 

Equating (10) at A = 0, C = 0 and solving the non-infected state variables. We get the following   

From the first equation of (10), (1−α γ µ)Λ− ( + )P = 0. Solving for P we get  

P = .  

From the second equation of (10), α γ δ λ µΛ+ P + R − ( + )S = 0. Solving for S we get  

Λ +(γ αµ) 

S = . µµ 

γ( + ) 

Therefore, the disease free equilibrium E0 becomes  

  (1−α)Λ Λ +(γ αµ)  

 E0 =  , ,0,0,0 .                                                       

  γ µ µµ γ+( + )  
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1 
1 N 

β 
ε = 

3.4. Endemic equilibrium point  

To find the endemic equilibrium point E* we considered the steady state of the system (1)-(5) for 

all state variables.  

From the first equation of (10) we have  

      (1− Λ− +α γ µ) ( )P* = 0 

  * (1− Λα)   

 ⇒ =P  

γ µ+ 

Let  

  y =ε ε
1A+ 2C.  (11)  

From the third equation of (10) we have  

  ρλ ϕ θS* − + + +(d1 µ)A* = 0 

   S = ρε ε  1A* + 2 (1−ρ ϕ θ)( + + d1 +µ ρϕ)+  A*  

   

3.5. Basic reproduction number(ℜ0 )   

The basic reproduction number is the average number of secondary cases a typical infectious 

individual will cause in a completely susceptible population [2]. In this section, we obtained 

the basic reproduction number which is the threshold parameter that governs the spread of the 

disease. For the given model the endemic equilibrium point E* exists in the feasible region D, 

the necessary and sufficient condition is that:  

0 < S* < Λ +(γ αµ) or equivalently Λ 

+(γ αµ) ≥1. µµ γ( + ) µµ γ( + )S* 

Λ +(γ αµ) 

Define ℜ =0 * , thus  

µµ γ( + )S 

  Λ +(γ αµ) ρε β
1( + d2 +µ ε ρ ϕ θ)+ 2(1− )( + + d1 +µ ερϕ)+ 2  

  

  ℜ =0  , µµ γ( + ) (ϕ θ+ + d1 +µ β)( + d2 +µ) 

  Λ +(γ αµ)  ρε1 ε ρ2(1− ) ερϕ2 
 (23 

 ∴ℜ =0 µµ γ( + ) (ϕ θ+ + +d1 µ β) + ( + +d2 µ ϕ θ) + ( + + +d1 µ β)( + +d2 µ
) .  )  

Since   and ε2 = βN
2 the basic reproduction number on (23) becomes  

 (r+αµ)  ρβ1 β ρ2(1− ) βρϕ2  

 ∴ℜ =0  + + .  

 (µ γ+ ) (ϕ θ+ + +d1 µ β) ( + +d2 µ ϕ θ)( + + +d1 µ β)( + +d2 µ
)  

Considering equation (23) above, we give interpretation of the basic reproduction number for 

our model as follows.  

When a single infective is introduced in a population with a probability ρ it is acute infected, 

it makes β1  contact per unit time. This is multiplied by the average infectious period 1(ϕ θ+ + 

+d1 µ) for acute infectious; with probability 1−ρ the infective is a chronic, and hence make β2 

effective per unit time during the average time 1(β+ +d2 µ) it remains a chronic infected. This 

number should be augmented by the number of infectious ρβ β2 ( + +d2 µ) caused by this 
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infective after it becomes acute infectious, with a probability ϕ ϕ θ( + + +d1 µ) to survive the 

acute stage. Therefore, the expression in the square bracket in (23) is the per capita average 

number of secondary infections. This number multiplied by the number of susceptible at disease 

free equilibrium, Λ +(γ αµ µµ γ)( + ) gives ℜ0.  

3.6. Local stability of disease-free equilibrium  

Proposition 3.1 The disease free equilibrium point is locally asymptotically stable if ℜ <0 1 and 

unstable if ℜ >0 1.  

Proof  To proof the proposition we first construct a Jacobean matrix for the system (1)- 

Now we compute the Jacobean 

matrix at disease free equilibrium 

and investigate its stability effect due 

number ℜ0.  to the reproduction 

From the Jacobean matrix (28), we 

obtain a characteristic 

evaluating det(JE0 polynomial by 

−λI)= 0 as follows.  

 0 0 θ β K3 −λ 

where K1 =− + + +(ϕ θ d1 µ), K2 =− + +(β d2 µ) and K3 =− +(δ µ). Therefore,  

λ1 =− +(γ µ λ µλ ϕ), 2 =− , 3 =− + + +( θ d1 µ), and  

 (K2 −λ)(K3 − =λ) 0 ⇒λ2 −(K2 + K3)λ+ K K2 3 = 0  

By Routh-Huarth criteria  

a1 =−(K
2 + K3)=(β+ d

2 +µ δ µ)+ ( + ) > 0,  

 a2 =K K
2 3 = + +(β d

2 µ δ µ)( + >) 0.  

All the eigen values of the Jacobean matrix at disease free equilibrium point are strictly 

negative. Therefore, the DFE point 𝐸𝐸0 is locally asymptotically stable if and only if ℜ <0 1. 

Hence the proposition is proved.                                              ◼  

3.7. Global stability of disease free equilibrium   

In this section, we analyze the global stability of the disease free equilibrium point by applying 

the technique used in [12]. We write the model equation (1)-(5) in the form:  

dXs 

  dt = A X( s − XDFE s, )+ A X1 i , 

(5) at DFE 

− +(γ µ) 

 

γ 

 

JE0 =  0 

 

  0 

  0 

0 

−µ 

0 

0 

0 

0 

0 

−(ϕ θ+ + d1 +µ) 

ϕ θ 

0 

0 

0 

−(β+ d2 +µ) β 

 0  

 

δ 

 

 0 .  

 

 0  

−(δ µ+ )  

(24)  

− +(γ µ λ) 

− γ 

0 

0 

0 

− −µ λ 

0 

0 

0 

0 

K1 −λ ϕ 

0 

0 

0 

K2 −λ 

0 

δ 

0= 

0,  

0 
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 dXi = A X2i , 

 dt 

where Xs is the vector representing the non-transmitting compartment and Xi is the vector 

representing the transmitting compartments. The disease free equilibrium is globally 

asymptotically stable if A has negative eigen values and A2 is a Metzler matrix (i.e., the off-

diagonal elements of A2 are non-negative).  

For the model equation (1)-(5) we have Xs = (P S R, , )T and Xi = (A C, )T , where the superscript 

T refers to a transpose of the matrix.  

We need to check whether a matrix A for non-transmitting compartments has real negative 

eigen values and that A2 is Metzler matrix. From the equation for nontransmitting compartments 

in the model we can get:  

 − +(γ µ) 0 0  

  A= γ −µ δ .  

   

  0 0 −(δ µ+ )  

From the matrix A above, we get the eigen values λ γ µ1 =− +( ), λ µ2 =− and λ δ µ3 =− +( ) 

all are real and negative. This implies that the system  

dXs 

= A X( s − XDFE s, )+ A X1

 i dt 

is locally and globally asymptotically stable at disease free equilibrium if A2 is Metzler matrix.  

Using suitable rearrangement, we get   

 ρε1S* −(ϕ θ+ +d1 +µ) ρε2S*  0 0  

A2 =  ρε ϕ2S* + (1−ρε) 2S* −(β+d2 +µ)  and  A1 = θ β0 0 

.   

 

Since the off-diagonal elements of A2 are non-negative so A2 is a Metzler matrix.  

Hence, the DFE point is globally asymptotically stable.    

Lemma 3.2 For ℜ >0 1, a unique endemic equilibrium point E* exists and no endemic otherwise.   

Proof  The endemic equilibrium point denoted by E* =(P S*, *, A C*, *,R*) and it occurs when the 

disease persists in the community.  

 dA dC 

For the disease to be endemic,  > 0 and  > 0 that is:  

dt dt  

 dA 

=ρλ ϕ θS −( + + d1 +µ)A > 0,  (25) dt   dC 
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= −(1 ρλ ϕ β) S + A− + +( d2 µ)C > 
0. dt 

From inequality (26) we get  

(26)  

     (β+ +d2 µ)C< −(1 ρλ ϕ) S+ A    

  (1−ρλ ϕ) S + A 

 ⇒ <C   

β+ d2 +µ 

From inequality (25) we get  

(27)  

  ρλS 

    A<   

ϕ θ+ + d1 +µ 

(28)  

  ρλϕS 

 ⇒ϕA<   

ϕ θ+ + +d1 µ 

  

  ϕA ρλϕS 

⇒ <  β+ d2 +µ ϕ θ( + + d1 +µ β)( + d2 +µ) 
From (27) we have  

(29)  

  (1−ρλ ϕ) S + A (1−ρλ) S ϕA 

    C < = +   

β+ d
2 +µ β+ d2 +µ β+ d

2 +µ 

  

  (1−ρλ) S ρλϕS 

      < +   

β+ d2 +µ β( + d2 +µ ϕ θ)( + + d1 +µ) 

  

  ε ρλ2(1− ) S ερλϕ2 S 

 ⇒ε
2C < +   

β+ d2 +µ β( + d2 +µ ϕ θ)( + + d1 +µ) 

From (28) we have  

(30)  

  ρλS 

    A<   

ϕ θ+ + d1 +µ 

  

  ρε1 

 ⇒ε
1A<   (31)  

ϕ θ+ + d1 +µ 

Combining (30) and (31) we get  

 ρελ1 S ε ρλ2(1− ) S ερλϕ2 S 

    ε ε1A+ 2C < + +   

ϕ θ+ + d1 +µ β+ d2 +µ β( + d2 +µ ϕ θ)( + + d1 +µ) 

  ερ1 ε ρ2(1− ) ερϕ2  

              =λS  + +   

ϕ θ+ +d1 +µ β+d2 +µ β( +d2 +µ ϕ θ)( + +d1 +µ)  

  ερ1 ε ρ2(1− ) ερϕ2  
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 ⇒ <λ λS  + +   

ϕ θ+ + d1 +µ β+ d2 +µ β( + d2 +µ ϕ θ)( + + d1 +µ)  

  ερ1 ε ρ2(1− ) ερϕ2  

 ⇒ <1 S  + +   

ϕ θ+ +d1 +µ β+d2 +µ β( +d2 +µ ϕ θ)( + +d1 +µ)  

Λ +(γ αµ) 

Since S < =S0  , we have  µµ γ( + 

) 

 Λ +(γ αµ)  ερ1 ε ρ2(1− ) ερϕ2  

1<  + +  µµ γ ϕ θ( + )  + +d1 +µ β+d2 +µ β( +d2 +µ ϕ θ)( + 

+d1 +µ)  

⇒ℜ0 >1  

Thus, a unique endemic equilibrium exists when ℜ >0 1.                              ◼  

3.8. Global stability of endemic equilibrium point (EE)  

Theorem 3.3 If ℜ >0 1, the endemic equilibrium point E* of the model is globally asymptotically 

stable.  

Proof  To prove the global asymptotic stability of the endemic equilibrium point we use the 

method of Lyapunov function. Define  

* 

 * * * * *  * * P   * * S   * * A  

L P S( , , A C, ,R )= P − P − P ln + S − S − S ln *  + A− A − A ln *  

  P   S   A   

                                    + C −C* −C* ln C* 
 

 + R − R* − R* ln R
* . 

  C   R  

By direct calculating the derivative of L along the solution of the system (1)-(5) we get dL  P 

− P*  dP  S − S*  dS  A− A*  dA C −C*  dC  R − R*  dR 

=   +   +   +   +  

  dt  P  dt  S  dt  A

  dt  C  dt  R  dt 

  P − P*   S − S*  

   =  [(1−α γ µ)Λ− ( + ) ]P + [α γ δ λ µΛ+ P + R − ( + ) ]S  

  P   S  

    

  A− A*  C −C*  

+ ρλ ϕ θS −( + + d1 +µ) A + C (1−ρλ ϕ β) S + A−( + d2 

+µ)C   

  A   

 R − R*  
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   +  [θ β µ δA+ C − ( + ) ]R  

  R  

 dL  P*   S*  

⇒ = 1− [(1−α γ µ)Λ− ( + ) ]P + 1− [α γ δ λ µΛ+ P + R − ( + ) ]S dt  

P   S  

    

  A*   C*  

+ − 1 ρλ ϕ θS −( + + d1 +µ) A + 1− C (1−ρλ ϕ β) S + A−( + d2 

+µ)C   

 A   * 

  R  

   + − 1 [θ β µ δA+ C − ( + ) ]R  

  R  

dL 

⇒  = G − F 

dt 

where  

G = +(γ µ)P* + +(λ µ)S* + + + +(ϕ θ d1 µ) A* +(β+ +d2 µ)C* + +(µ δ)R* and  

F d A

 d C [(1 ) ] [ ] .  

Thus if G F< then dL dt ≤ 0. Noting that dL dt = 0 if and only if P = P*, S = S*,  

A = A*, C = C* and R = R*.   

Therefore, the largest compact invariant set in Ω={(P S A C R, , , , )∈Ω:dL dt = 0} is the 

singleton E* by Lasalle invariant principle [5] it implies that the endemic equilibrium point is 

globally asymptotically stable in Ω if G < F.                                 ◼  

4. Sensitivity analysis  

The total human mortality and morbidity attributable to HCV disease can be best reduced by 

investigating the relative importance of the parameters featuring in the basic reproduction 

number. To determine how best we can do in order to reduce mortality and morbidity due to 

HCV disease, it is crucial to know the relative importance of different factors responsible for 

its transmission and prevalence.   

Sensitivity analysis was carried out to determine the model robustness to parameter values. 

This will help us in identifying and verifying model parameters that most influence the pathogen 

fitness threshold for the pathogens. Further, values obtained for sensitivity indexes indicate 

which parameters should be targeted most for intervention purposes. Sensitivity analysis of ℜ0 

with respect to each parameter. The sensitivity analysis of the parameters can be calculated as 

follows:  

1,  
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Similarly, we can get the sensitivity index of each parameter.  

Table 1. Sensitivity index table.  

Parameter  Sensitivity Index  

Λ  +ve  

γ  +ve  

ε1  +ve  

ε2  +ve  

ϕ  +ve  

µ  -ve  

d1  -ve  

d2  -ve  

θ  -ve  

β  -ve  

Table 1 shows the sensitivity indices of ℜ0 to the parameter for HCV model, evaluated based 

on the values on Table 2. The parameters are ordered from the most sensitive to least 

sensitive. This result shows that, when the parameters values of Λ, γ, ε1, ε2 and ϕ increases 

while the other are kept constant they increase the value of ℜ0 which implies they increases 

the endemicity of the disease. Whereas the parameters µ,  d1, d2, θand β decrease the value of 

ℜ0 while the other are kept constant which implies they decrease the endemicity of the 

disease.  

Table 2. Parameter values for typhoid fever model.  

Parameter 

symbol  
Parameter description  Value  Source  

Λ  Recruitment rate  100  [1]  

α  Proportion of susceptible individuals at birth  0.1  Assumed  

µ  Natural mortality rate  0.0004  [1]  

d1  
The disease induced mortality rate due to acute 

infection  
0.03  Assumed  

d2  
The disease induced mortality rate due to chronic 

infection  
0.05  Assumed  

β1  
Effective contact rate of individuals with acute 

infected  
0.002  Assumed  

β2  
Effective contact rate of individuals with chronic 

HCV infected  
0.001  Assumed  

ρ  
The probability at which the susceptible joining into 

acute infected  
0.65  Assumed  

γ  Rate of loss of protection  0.35  Assumed  

β  
The rate of treatment of chronically infected and 

joining recovered class  
0.3  Assumed  

δ  
Removal rate from recovered subclass to susceptible 

subclass  
0.05  [1]  
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θ  
The rate of treatment of acute infected and joining 

recovered class  
0.23  [1]  

ϕ  
The rate at which acute infected individuals become 

chronically infected  
0.05  [1]  

  

5. Extension into an optimal control  

In this section we apply optimal control method for the system (1)-(5) by using Pontryagin’s 

maximum principle. The optimal control model is an extension of HCV model by incorporating 

the following three controls mentioned below.  

i. u1 is the prevention effort, that protect susceptible from contracting the 

disease.   

ii. u2 is the treatment used for acute infected individuals. iii. u3 is the treatment 

used for chronic infected individuals.  

After incorporating u1, u2 and u3 in HCV model (1)-(5), we get the following optimal model of 

HCV disease.  

dP 

 dt = −(1 α γ µ)Λ− ( + )P, 

 

 dSdt = Λ+α γ δP + R − −(1u1)λ µS − S, 

 

dA 

 =ρ(1−u
1)λ θS −( +u

2 ) A− −(1 u
2 )ϕA−(d

1 +µ) A,   (36)  

 dt 

dC 

 = −(1 ρ) 1( −u1)λS + −(1 u2 )ϕ βA−( +u3)C −(d2 +µ)C, 

 dt 

dR 

 dt =(θ+u2 ) A+(β+u3)C − (µ δ+ ) .R 

The control functions,u t1( ), u t2 ( ) and u t3( ) are bounded, Lebesgue integrable functions, which 

is defined as  

 U ={(u t u t u t1( ), 2( ), 3( ) :0)≤ u t1( ) <1, 0 ≤ u t2( ) <1, 0 ≤ u t3( ) <1, 0 ≤ ≤tT}.  

Our aim is to obtain a control U, and P S A C, , ,  and R that minimized the proposed objective 

function J and the form of objective functional is taken in line with the literature on epidemic 

model [17], given by:  

 t f  1 3 2  

J = min1 2 3 ∫0 b A1 +b C2 + 2 ∑i=1 wui i  dt, (37) u u, ,u 

where b1, b2 and wi are positive. The expression 12 wui i
2 represents costs which is associated with 

the controls ui and t f is the final time. The coefficients are balancing  

cost factors. Now we seek to find an optimal triple control  and u3
*, such that  
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 ,, min

 , , : , , ,  (38)  

where U ={J (u1,u u2, 3)} is a measurable set and t∈[0,t f ] for the control set.  

5.1. Existence of an optimal control  

The necessary condition that an optimal solution must satisfy comes from maximum principle 

[15]. The existence of an optimal control pair can be proved by using the results [4].       

The system of equation (1)-(5) is bounded by a linear system for a finite time interval so 

that the existence of linear system is guaranteed [4, Theorem 4.1, p68-69] (see the detail of the 

proof).  

For the optimal control problems, we need to check the following properties are satisfied.  

(1) The set of controls and corresponding state variables is non-empty.  

(2) The control set U is convex and closed.  

(3) The RHS of the state system (1)-(5) is bounded by a linear function in the state and control.  

(4) The integrand of the objective functional is concave on U.  

a 

 

(5) The function is bounded below by a2 − a u1 ( 12 +u2
2 +u3

2 )2 where a1 > 0, a2 > 0  and α>1.  

The existence result in [8, 1982, Theorem 9.2.1, p 182] for the system (1)-(5) with bounded 

coefficients is used to satisfy condition 1. The control set U is convex and closed by definition.  

The RHS of the state system (1)-(5) satisfies condition 3 as the state solutions are a priori  

3 2 bounded. The integrand in the objective functional b A

 b C  wui i is clearly  

i=1 

 a  and α>1 satisfying  concave on U. Finally, there are a

a 

  2 ,  

2 i=1 

because the state variables are bounded. Hence, there exist an optimal control (u u u1, 2, 3) that 

minimize the objective functional, J u u u( 1, 2, 3).   

5.2. Hamiltonian and optimality system  

The necessary condition for the optimal pair is obtained using the “Pontryagin’s maximum 

principle” ([15]). Therefore, using this principle, we get a Hamiltonian which is defined as  

 dP dS dA dC dR 

H P S A C R t( , , , , , ) = L A C u u u t( , , 1, 

2, 3, )+
λ
1 +λ

2 +λ
3 +λ

4

 +λ
5 , dt dt dt dt

 dt 
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1 3 2 where L A C u u u t( , , 1, 2, 3, )= b 

A1 +b C2 + 2 ∑i=1wui i , and λi is adjoint variable to be determined suitably by using 

Pontryagin’s maximum principle.  

Theorem 5.1 For an optimal control set u1, u2 and u3 that minimizes J over U there are an adjoint 

variables λλ λ1, 2,..., 5 such that  

dλ1 

 dt =λγ µ λγ1 ( u1 + )− 2 u1, 

 

dλ2 =λ µ2  + −(1 u1)(ε ε1A+ 2C) −λρ3 (1−u1)(ε ε1A+ 2C) dt 

 

        −λ ρ
4(1− ) 1( −u1)(

ε ε
1A+ 2C), 

 ddtλ3 =− +b1 
λ
2 (1−u1)

ε λ ρε
1S − 3  1 (1−u1)S −(θ+u2 )− −(1u2 )ϕ−(d1 +µ)   (39)  

 

           −λ
4 (1−ρ) 1( −u1)

ε
1S + −(1 u2 )ϕ λ θ − 5 ( +u2 ), 

 

dλ4 

  dt =− +b2 λ2 (1−u1)ε2S −λρε3 2 (1−u1)S −λ4 (1−ρε) 2 (1−u1)S 

 

          −(u3 + +β d2 +µ λ β) − 5 ( +u3), 

 

ddtλ5 =−λδ λ µ δ2 − 5( + ), with transversality conditions λi (t f ) = 0, i =1,2,…5. 

Furthermore, we obtained the control set (u u u1
*, 2

*, 3
*) characterized by ∂H ∂ui

* = 0 for i 

=1,2,3. Hence we obtain   

u t ( 

) max 0,min 1, , u t

( )

 max 0,min 1, , u t

( )

 max 0,min 1, ,  

where   

σ λ1 =  1yP + S(ε ε1A+ 2C)(−λ λρ λ ρ2 + 3 + 4(1− )) w1 , 

 σ2 = A[λ ϕ λρ λ3(1− −)4 − 5 ] w2 ,  

and σ3 = c(λ λ4 − 5 ) w3.   
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Proof The adjoint variables and transversality conditions are standard results of Pontryagin’s 

maximum principle. To obtain the adjoint equations we differentiate the Hamiltonian H with 

respect to the state variables P S A C, , ,   and R respectively and then we obtain dλ1 ∂H 

=− =λγ µ λγ1 ( u1 + )− 

2 u1, dt ∂P dλ2 ∂H 

dt =− ∂S =λ µ2  + −(1 u1)(ε1A+ε2C) −λρ3 (1−u1)(ε1A+ε2C)  

       −λ
4(1−ρ) 1( −u1)(

ε
1A+ε

2C), dλ3 ∂H 

 =− =− +b λ (1−u )ε λ ρεS −  

 dt ∂A 1 2 1 1 3  1(1−u1)S −(θ+u2)− −(1 u2)ϕ−(d1 +µ)  

       −λ
4 (1−ρ) 1( −u1 1)εS + −(1 u2)ϕ λ θ − 5( +u2), dλ4 

∂H 

 =− =− +b λ (1−u )ε λρεS − (1−u )S −λ  

 dt ∂C 2 2 1 2 3 2 1 4 (1−ρε) 2(1−u1)S  

       −(u3 + +β d2 +µ λ β) − 5( + u3), dλ5 

∂H 

=− =−λδ λµ δ2 − 5( + ). 

dt ∂R 

Again using the method of Pontryagin et.al [15], we obtain the controls by solving  

∂ ∂ =H ui
* 0 for i =1,2,3 then  

 u1* = λ1yP + S(ε ε1A+ 2C)(−λ λρ λ ρ2 + 3 + 4 (1− )) w1 ,  u2* = 

A[λ ϕ λρ λ3(1− ) − 4 − 5] w2 ,  u3* = c(λ λ4 − 5 ) w3 .  

Thus, writing u1
*, u2

* and u3
* using standard control arguments involving the bounds on  

the controls, we conclude    

0   if   σ
1 ≤ 0, u1

* 

= σ1 if   0 <σ1 <1,  

1    if   σ1 ≥1. 

 

This implies   

0   if   σ
2 ≤ 0, u2

* 

= σ2 if   0 <σ2 <1,  

1    if   σ2 ≥1. 

 

0    if   σ3 ≤ 0, u3
* 

= σ3  if   0 <σ3 <1,  

 

1     if   σ3 ≥1. 

u1
* = max 0,min 1,{ ( σ1 )}, 

u2
* = max 0,min 1,{ ( σ2 )}, 

u3
* = max 0,min 1,{ ( σ3 )},  

The optimality system is formed from the optimal control system and the adjoint variable 

system by incorporating the characterized control set and initial and transversality condition.  

dP 

 dt = −(1 α γ)Λ− u P1 −µP, 

 



International Journal of Mathematical Modelling and Computation 

Vol 1, Issue 1 2025 

 

31 

Mathlogix publications 

 

dSdt = Λ+α γu P1 +δR − −(1 u1 )λ µS − S, 

 

dA =ρ(1−u1 )λ θS −( +u2 ) A− −(1 u2 )ϕA−(d1 +µ) A, 

 dt 

dC 

= −(1 ρ) 1( −u1 )λS + −(1 u2 )ϕ βA−( +u3 )C −(d2 +µ)C, 

 dt 

dR 

=(θ+u2 ) A+(β+u3 )C − (µ δ+ )R, 

 dt 

dλ1 

=λγ µ λγ1 ( u1 + )− 2 u1, 

 dt (40 

 

dλ2 =λ µ2  + −(1 u1 )(ε ε1A+ 2C) −λρ3 (1−u1 )(ε ε1A+ 2C) ) dt 

 

   −λ ρ
4 (1− ) 1( −u1 )(

ε ε
1A+ 2C), 

dλ3 

 =− +b1 
λ
2 (1−u1 )

ε λ ρε
1S − 3  1 (1−u1 )S −(θ+u2 )− −(1 u2 

)ϕ−(d1 +µ)  dt 

 

 −λ
4 (1−ρ) 1( −u1 )

ε
1S + −(1 u2 )ϕ λ θ − 5 ( +u2 ), 

dλ4 

 dt =− +b2 λ2 (1−u1 )ε λρε2S − 3 2 (1−u1 )S −λ4 (1−ρε) 2 (1−u1 

)S 

 

   −(u3 + +β d2 +µ) ,   

 

ddtλ5 =−λδ λµ δ2 − 5( + ), 

  

such that λi (t f )= 0, i =1,2,…,5, P(0) = P
0, S(0) = S

0, A(0) = A
0, C(0) = C0 and 

R(0) = R0.  
  

◼  

  

6. Numerical simulations  

In the present work, we have used PSACR epidemic model with control measures. The 

simulations are carried out in order to explore the impacts of control measures on the HCV 

disease dynamics. Following parameter values are used in the model for simulation purpose  

Λ=100, α= 0.1, µ= 0.004, d1 = 0.03, d2 = 0.05, β1 = 0.002, β2 = 0.001, ρ=165,  γ= 0.35, 

β= 0.3, δ= 0.05, θ= 0.23, ϕ= 0.05, T = 6, b1 =100, b2 = 50,  w1 = 2,   
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 w2 = 3, w3 = 5,   

and initial values P(0) = 200, S(0) = 600, A(0) =180, C(0) =120, R(0) = 200.   

The optimal control solution is obtained by solving the optimality system (40), which 

consists of the state system, the adjoint system and transversality condition. To solve the state 

system we use a forward fourth-order Runge-kutta method and solve the adjoint system using 

a backward fourth-order Runge-Kutta method. The solution iterative scheme involves making 

a guess of the controls and solves the state system using forward fourth order Runge-Kutta 

scheme. Due to the transversality conditions, the adjoint equations are then solved by the 

backward fourth-order Runge-Kutta scheme using the current iterations solutions of the state 

equations. The controls are then updated using a convex combination of the previous controls 

and the values obtained using the characterizations. The updated controls are then used to repeat 

the solution of the state and adjoint systems. This process is repeated until the values in the 

current iteration are close enough to the previous iteration values [7].   

In this section we investigate numerically the effect of the following optimal control 

strategies on the spread of the disease in a population.  

i. Using prevention effort (u1), that protect susceptible from contracting the disease (u2 = 0 

and u3 = 0) .   

ii. Using treatment effort (u2) for acute infected individuals(u1 = 0 and u3 = 0). iii. Using 

treatment effort (u3) for chronic infected individuals (u1 = 0 and u2 = 0). iv. Using prevention 

(u1) for susceptible and treatment (u2 ) for acute infected individuals (u3 = 0).  

v. Using prevention (u1) for susceptible and treatment (u3) for chronic infected individuals (u2 

= 0).  

vi. Using treatment (u2) for acute and treatment (u3) for chronic infected individuals  

(u1 = 0).  

vii. Using all the three controls, prevention effort (u1), treatment effort (u2 ) and treatment effort 

(u3).  

6.1. Control with prevention only  

In Figure 3, we observe that due to the implementation of prevention effort on susceptible 

population the proportion of acute and chronic infected population decreases as compared with 

the case without control. This implies prevention minimizes the rate of joining individuals in to 

acute and chronic compartments. Thus, we can deduce that optimized prevention reduces the 

burden of the both acute and chronic infection of HCV.  
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Figure 3. Simulation of optimal control with prevention only.  

6.2. Controls with only treatment for acute infected population(u2)  

The HCV treatment control u2 (treatment given for acute infected population) is used to 

optimize the objective functional J; the other controls (u1 and u3) relating to HCV are set to 

zero. From Figure 4 it is observed that the acute infected population decreases with time since 

some of the acute infected population are recruited for treatment and remaining joins the 

chronic infected class. As the rate of control (u2) increases, the acute infected population 

decreases with time leading to the decrease of chronic infected population. As a result it is 

possible to say applying a control measure on acute infected population leads to a faster 

reduction of proportion of both acute and chronic infected population as compared to the case 

without applying the control measure.                                    

  

Figure 4. Simulation of optimal control with treatment for acute infectious only.  

6.3. Controls with treatment only for chronic infected population(u3)  

The HCV treatment control 𝑢𝑢3 is used to optimize the objective functional J; the other controls 

(u1 and u2 ) relating to HCV are set to zero. From Figure 5 we observe that initially the control 
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u3 has no effect on the dynamics of chronic infected population. In the mean time the proportion 

of chronic infected population decrease with time leading to faster declining of chronic infected 

population.  

  

Figure 5. Simulation of optimal control with treatment for chronic infectious only.  

6.4. Controls with prevention and treatment for acute infected population(u and u1   2 )   

The HCV treatment controls u1 and u2 are used to optimize the objective functional J; the other 

control u3 relating to HCV is set to zero. We observe from Figure 6 that this strategy shows 

there is a significant effect in reducing the proportion of both acute and chronic infected 

population in than the previous strategies. This situation occurred due to the fact that the control 

u1 minimizes both acute and chronic infected population which will join both compartments 

whereas the control u2 minimizes the proportion of acute infectious population as a result the 

chronic infectious population will be minimized.  

  

Figure 6. Simulation of optimal control with prevention and treatment for acute infectious.  
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6.5. Controls with Prevention and treatment for chronic infected population(u and u1   3)   

The HCV treatment controls u1 and u3 are used to optimize the objective functional J; the other 

control u2 relating to HCV is set to zero. We observe from Figure 7 that this strategy shows 

there is a higher reduction of the proportion of population of chronic infected population than 

the acute infectious population.  

  

Figure 7. Simulation of optimal control with prevention and treatment for chronic infectious.  

6.6. Controls with prevention and treatment for chronic infected population (u and u2  

3)  

The HCV treatment controls u2 and u3 are used to optimize the objective functional J; the other 

control u1 relating to HCV is set to zero. We observe from Figure 8 that this strategy shows 

there is only a slight variation as compared to the case without control. This occurred due to the 

fact that the higher recruitment rate of susceptible populations to both acute and chronic 

compartments.   

  

Figure 8. Simulation of optimal control with treatment for acute and chronic infectious.  
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6.7. Controls with prevention(u1), treatment(u2), and treatment(u3)  

Here we used all the three intervention strategies which enable to minimize the objective 

functional J. We observe from Figure 9 that the proportion of both acute and chronic infectious 

population vanishes rapidly before the specified time. Therefore, applying this strategy helps 

to eradicate HCV from the population.  

  

Figure 9. Simulation of optimal control with all the three strategies.  

7. Discussions and conclusions        

In this study a deterministic mathematical model of HCV consisting acute and chronic stages 

with optimal control strategies has been established. The model incorporates the assumption 

that all populations are equally susceptible. Both qualitative and numerical analysis of the 

model was done. We have shown that there exists a feasible region where the model is well 

posed and biologically meaningful in which a unique disease free equilibrium point exists. The 

steady state points were obtained and their local and global stability conditions were 

investigated. The model has a unique disease free equilibrium if ℜ <0 1 and has endemic 

equilibrium if ℜ >0 1. Sensitivity analysis of the model was done. It was observed that mortality 

rate has higher impact in minimizing the burden of the disease when the parameter increases 

which is not biologically reasonable to use it as a control mechanism.  

For the given model an optimal control problem is formulated by incorporating different 

control strategies. The optimality condition was established by Pontryagin’s maximum 

principle. A numerical simulation of the model was conducted and different combinations of 

control strategies were compared. It was observed that prevention has a significant impact in 

minimized the burden of the disease. It was also shown that treatments given for acute and 

chronic infected population minimizes the burden of the disease. Finally, it was observed that 

applying all the three control strategies eliminate HCV disease from the population.   
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