Vol 1, Issue 1 2025

Domination of Connected Edges in Fuzzy Graphs

¹S.Basheer Ahamed² and P.Surulinathan³

- 1 Department of Mathematics, Government Arts College, Paramakudi, Tamilnadu, India.
- 2 Department of Mathematics, P.S.N.A. College of Engineering and Technology, Dindigul, Tamilnadu, India.
- 3 Department of Mathematics, Lathamathavan Engineering college, Madurai, Tamilnadu, India.

Article Info

Received: 31-12-2024 Revised:08-01-2025 Accepted:19-01-2025 Published:30-01-2025

Abstract: The notions of connected edge dominance and total connected edge domination in fuzzy graphs are covered in this study. For a variety of fuzzy graph classes, we calculate the connected edge dominance number () and the total edge domination number (), and we derive limits for both. For these settings, we also derive Nordhaus Gaddum type results.

MSC: 05C.

Keywords: Fuzzy graph; Domination; connected Edge Domination; Total connected edge Domination.

1. Introduction

Ore and Berge initiated the study of dominance sets in graphs. Along with a number of fuzzy analogs of graph theoretic ideas like routes, cycles, and connectedness, Rosenfield popularized the idea of a fuzzy graph. The topic of dominance in fuzzy graphs was covered by A. and S. Somasundram. D.K. Patwari and V.R. Kulli spoke about the graph's total edge dominance number. They used fuzzy graphs' effective edges to determine dominance. In this research, we use fuzzy edge cardinality to examine the connected edge dominance number of fuzzy graphs and build a link with other parameters that are also studied.

2. Preliminaries

Definition 2.1. A fuzzy graph $G = (\sigma, \mu)$ is a set with two functions, $\sigma : V \to [0,1]$ and $\mu : E \to [0,1]$ such that $\mu(xy) \le \sigma(x) \land \sigma(y) \ \forall x,y \in V$.

Definition 2.2. Let $\mu = (\sigma, \mu)$ be a fuzzy graph on V and $V_1 \subseteq V$. Define σ_1 on V_1 by $\sigma_1(x) = \sigma(x)$ for all $x \in V_1$ and μ_1 on the collection E_1 of two element subsets of V_1 by $\mu_1(xy) = \mu(xy)$ for all $x, y \in V_1$. Then (σ_1, μ_1) is called the fuzzy subgraph of G induced by V_1 and is denoted by V_1 .

Vol 1, Issue 1 2025

Definition 2.3. The order p and size q of a fuzzy graph $G = (\sigma, \mu)$ are defined to be $p = {}^{P}\sigma(x)$ and $q = {}^{P}\mu(xy)$. $x \in V$ $xy \in E$

Definition 2.4. Let $\sigma: V \to [0,1]$ be a fuzzy subset of V then the complete fuzzy graph on σ is defined on $G = (\sigma,\mu)$ where $\mu(xy) = \sigma(x) \land \sigma(y)$ for all $xy \in E$ and is denoted by K_{σ} .

Definition 2.5. The complement of a fuzzy graph G denoted by G is defined to be $G = (\sigma, \mu)$ where $\mu(xy) = \sigma(x) \land \sigma(y) = \sigma(x)$. **Definition 2.6.** Let $G = (\sigma, \mu)$ be a fuzzy graph on V and $S \subseteq V$. Then the fuzzy cardinality of S is defined to be ${}^{P}\sigma(v)$.

Definition 2.7. Let $G = (\sigma, \mu)$ be a fuzzy graph on E and $D \subseteq E$ then the fuzzy edge cardinality of D is defined to be $^{P}\mu(e)$. $e \in D$

Definition 2.8. An edge e = xy of a fuzzy graph is called an effective edge if $\mu(xy) = \sigma(x) \land \sigma(y)$. $N(x) = \{y \in V \mid \mu(xy) = \sigma(x) \land \sigma(y)\}$ is called the neighbourhood of x and $N[x] = N(x) \cup \{x\}$ is the closed neighbourhood of x.

Definition 2.9. The effective degree of a vertex u is defined to be sum of the weights of the effective edges incident of u and is denoted by dE(u). ${}^{P}\sigma(v)$ is called the neighbourhood of u and is denoted by dN(u). $v \in N(v)$

Definition 2.10. The minimum effective degree $\delta_E(G) = \min\{dE(u) \mid u \in V(G)\}$ and the maximum effective degree $\Delta_E(G) = \max\{dE(u) \mid u \in V(G)\}$.

Definition 2.11. The effective edge degree of an edge e = uv, is defined to be $d_E(e) = dE(u) + dE(v)$. The minimum edge effective degree and the maximum edge effective degree are $\delta_E(G) = \min\{d_E(e) \mid e \in X\}$ and $\Delta_E(G) = \max\{d_E(e) \mid e \in X\}$ respectively. N(e) is the set of all effective edges incident with the vertices of e. In a similar way minimum neighbourhood degree and the maximum neighbourhood degree denoted by δ_N^0 and Δ^0_N respectively can also be defined.

Definition 2.12. A fuzzy graph $G = (\sigma, \mu)$ is said to be bipartite if the vertex set V can be partitioned into two non-empty sets V_1 and V_2 such that $\mu(v_1v_2) = 0$ if $v_1, v_2 \in V_1$ (or) $v_1, v_2 \in V_2$. Further if $\mu(uv) = \sigma(u) \wedge \sigma(v)$ for all $u \in V_1$ and $v \in V_2$ than G is called a complete bipartite graph and is denoted by $K_{\sigma 1}, \sigma_2$ where σ_1 and σ_2 are, respectively, the restrictions of σ to V_1 and V_2 .

Vol 1, Issue 1 2025

3. Connected Edge Domination in Fuzzy Graphs

Definition 3.1. Let $G = (\sigma, \mu)$ be a fuzzy graph on (V, X). A subset S of X is said to be an edge domination set in G if for every edge in X –S is adjacent to at least one effective edge in S. The minimum fuzzy cardinality of an edge dominating set is G is called the edge domination number of G and is denoted by $\gamma^0(G)$ or γ^0 .

Definition 3.2. Let $G = (\sigma, \mu)$ be a fuzzy graph on (V, X), an edge dominating set F of a fuzzy graph G is connected edge dominating set with hFi is connected. The connected edge domination number $\gamma'_c(G)$ or γ'_c is the minimum fuzzy cardinality of connected edge dominating set.

Example 3.4.

- (1) Since D is a connected edge dominating set of K_{σ} with minimum fuzzy edge cardinality, we have $\gamma_c^0(K_{\sigma}) = \min \left\{\sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} \mu(e_i)\right\}$ where n is the number of vertices of G.
- (2) $\gamma_c{}^0(G) = q$ if and only if $\mu(xy) < \sigma(x) \land \sigma(y)$ for all $xy \in E$. In particular, $\gamma_c{}^0(\bar{K_\sigma}) = 0$.
- (3) Since D is the connected edge dominating set of G of $K_{\sigma 1}, \sigma_2$ with minimum fuzzy cardinality we have $\gamma_c^0(K_{\sigma 1}, \sigma_2) = \min \left\{ \sum_{i=1}^r \mu(e_i) \right\}$ where $r = \min\{m, n\}$ in complete bipartite graph $K_{m,n}$. For the edge domination number γ^0 , the following theorem gives a Nordhaus Gaddum type result.

Theorem 3.5. For any fuzzy graph G, $\gamma'_c + \bar{\gamma}_c \leq 2q$, where is the connected edge domination number of G^- and equality holds if and only if $0 < \mu(xy) < \sigma(x) \land \sigma(y)$ for all $xy \in E$.

Proof. The inequality is trivial. Further $\gamma_c^0 = q$ if and only if $\mu(xy) < \sigma(x) \land \sigma(y)$ for all $xy \in E$ and $\neg \gamma_c = q$ if and only if $\sigma(x) \land \sigma(y) - \mu(xy) < \sigma(x) \land \sigma(y)$ for all $xy \in E$ which is equivalent to $\mu(xy) > 0$. Hence $\gamma_c^0 + \neg \gamma_c = 2q$ if and only $0 < \mu(xy) < \sigma(x) \land \sigma(y)$. \Box

Definition 3.6. A connected edge dominating set S of a fuzzy graph G is said to be minimal connected edge dominating set if no proper subset S is a connected edge dominating set of G.

Theorem 3.7. A connected edge dominating set S is minimal if and only if for each edge $e \in S$, one of the following two conditions holds.

- (a) $N(e) \cap S = \phi$
- (b) There exists an edge $f \in X S$ such that $N(f) \cap S = \{e\}$ and f is an effective edge.

Vol 1, Issue 1 2025

Proof. Let S be a minimal connected edge dominating set and $e \in S$. Then $S_e = S - \{e\}$ is not an edge connected dominating set and hence there exists $f \in X - S_e$ such that f is not dominated by any element of S_e . If f = e we get (a) and if $f \in E$ we get (b). The converse is obvious.

Definition 3.8. An edge e of a fuzzy graph G is said to be an isolated edge if no effective edges incident with the vertices of e. Thus an isolated edge does not dominate any other edge in G.

Theorem 3.9. If G is a fuzzy graph without isolated edges then for every minimal connected edge dominating set S, X - S is also a connected edge dominating set.

Proof. Let f be any edge in S. Since G has no isolated edges, there is an edge $c \in N(f)$. It follows from Theorem 3.7 that $c \in X - S$. Thus every element of S is dominated by some element of X - S. \square

Corollary 3.10. For any fuzzy graph G without isolated edges $\gamma'_c \leq \frac{q}{2}$.

Proof. Any graph without isolated edges has two disjoint connected edge dominating sets and hence the result follows. \Box

Corollary 3.11. Let G be a fuzzy graph such that both G and G^- have no isolated edges. Then $\gamma'_c + \bar{\gamma}'_c \leq q$, where $\bar{\gamma}'_c$ is the edge domination number of G^- . Further equality holds if and only if $\gamma'_c = \bar{\gamma}'_c = \frac{q}{2}$.

Connected Edge Domination in Fuzzy Graphs

Theorem 3.12. If G is a fuzzy graph without isolated edges then $\frac{q}{\Delta'(G)+1} \ge \gamma'_c(G)$.

Proof. Let D be a connected edge dominating set of G. Since,

$$|D|\Delta^{0}(G) \leq^{X} d_{E}(e) = {}^{X} |N(e)|$$

$$e \in D$$

$$\leq | {}^{I} N(e)|$$

$$e \in D$$

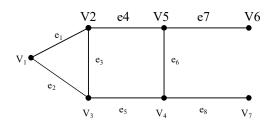
$$\leq |E - D|$$

$$\leq q - |D|$$

$$|D|\Delta^0(G) + |D| \le q$$
. Thus $\gamma'_c \le \frac{q}{\Delta'(G)+1}$.

Example 3.13.

Vol 1, Issue 1 2025



Here
$$\mu(e_i) = \sigma(V_i) = 0.1$$

 $q = 0.8, \ \gamma'_c = 0.13$
 $\Delta'(G) = 0.6$
 $\therefore \frac{0.8}{0.6 + 1} \ge 0.3$
Hence $0.5 > 0.3$

Theorem 3.14. For any fuzzy graph $\gamma_c^0 \ge q - \Delta^0(G)$.

Definition 3.15. Let G be a fuzzy graph without isolated edges. A subset D of E is said to be a total edge dominating set if every edge in E is dominated by an edge in D. The minimum fuzzy cardinality of a total edge dominating set is called the total edge domination number of G and is denoted by $\gamma_t^0(G)$

Theorem 3.16. If a fuzzy graph G has no isolated edges then $\gamma'_c(G) \leq \gamma'_t(G)$.

Theorem 3.17. For any fuzzy graph $\frac{q}{\Delta'(G)} \ge \gamma'_c(G0)$.

Proof. Let D be a connected edge dominating set with minimum number of fuzzy edge cardinality. Then every edge in D is adjacent to atleast $\Delta^0(G)$ fuzzy edge cardinality, therefore, |D| $\Delta^0(G) \leq q$. Hence $\frac{q}{\Delta'(G)} \geq \gamma'_c(G0)$ \square

References

[1] [1] E. Harary, Addison Wesley, 1969, Graph Theory. Fuzzy intersection graphs, M.L.N. McAlester, Comp. Math. Appl. 15(10)(1988), 871-886.[3] Domination in Graphs: Advanced Topics, by T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Marcel Dekker Inc., New York, U.S.A., 1998. [4] Fundamentals of Domination in Graphs, T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Marcel Dekker Inc., New York, U.S.A., 1998. [5] The split dominance number of a graph by V.R. Kulli and B. Janakiram, Graph Theory notes of New York, New York Academy of Sciences, XXXII(1997), 16-19. [6] The split dominance number of fuzzy graphs by Q.M. Mahioub and N.D. Soner was accepted for publication in the Far East Journal of Applied Mathematics in 2007. O. Ore, "Theory of Graphs," American Mathematical Society Colloq. Publications, Providence, 1962. [8] Edge Domination in Fuzzy Graphs: A Novel Approach, International

Vol 1, Issue 1 2025

Journal of IT, Engg & Applied Sciences Research, 4(1) (2015), C.Y. Ponappan, S. Basheer Ahamed, and P. Surulinathan. Rosenfeld, A. Fuzzy Graphs [9]. In: Fuzzy Sets and Their Applications, Zadeh, L.A., Fu, K.S., & Shimura, M. (Eds.), Academic Press, New York, 1975. [10] Domination in fuzzy graphs-I, Pattern Recognition Letters, 19(9) (1998), 787-791, A. and S. Somasundaram.