International Journal of Mathematical Theory and Applications
Vol 1, Issue 1 2025

The Algebraic Uses of Geometric Group Theory

Ramesh onam!

1 Department of Mathematics, S D (PG) College, Panipat, Haryana, India.

Article Info

Received: 31-05-2024 Revised:08-06-2025 Accepted:19-06-2025  Published:30-06-2025

Abstract: Geometric group theory is an area of mathematics concerned with the study of finitely formed groups. When the
groups in question are realized as geometric symmetries or continuous transformations of some spaces, this area
of mathematics explores the relationships between the algebraic properties of these groups and the topological
and geometric properties of the spaces on which they act. Early examples of this topic may be found in William
Rowan Hamilton's 1856 icosian calculus, in which he examined the icosahedral symmetry group using the edge
graph of the dodecahedral lattice. Walther von Dyck, a pupil of Felix Klein, first conducted systematic research
in this field in the early 1880s. Combinatorial group theory, which mainly focused on examining the
characteristics of discrete groups by examining group presentations, gave rise to geometric group theory. The
topic of geometric group theory is now largely absorbing the study of combinatorial group theory. Furthermore,
"geometric group theory" started to include the study of discrete groups using probabilistic, measure-theoretic,
arithmetic, analytic, and other techniques that are not often used in combinatorial group theory.
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1. Introduction

Groups and locations have a tight connection. There are several communities associated with a certain place or region. We
may investigate the group of symmetries, which is also called the group of structure-preserving bijections. In addition to the
homology and cohomology groups, to name a few more, there is the fundamental group. According to Hermann Weyl, these
groups might provide "a deep insight" into a particular place. An excellent example of this phenomenon may be found in the
study of knots. For instance, algebraic invariants that take the form of groups demonstrate that the trefoil knot cannot be
unraveled (see picture 1).

Figure 1. Groups show that these knots are distinct

The field of geometric group theory takes a fresh look at the connection between spaces and groups. The core idea of
geometric group theory is to adopt the following philosophy rather than using the algebraic structure and properties of groups
to analyze spaces. Using your results, explore the geometry and topology of the spaces the groups work on. In other words,

20
Mathlogix publications



International Journal of Mathematical Theory and Applications
Vol 1, Issue 1 2025

groups are the main subjects of study, and the techniques, instruments, and procedures used to investigate them are dynamical,
geometrical, and topological by definition. Compared to the titles of other branches of mathematics, the word "geometric
group theory" is relatively new1. The notion of hyperbolic groups and the study of finitely generated groups as metric spaces
were first presented by Gromov in his major works [Gro87, Gro93], which sparked a great deal of research and established
areas of investigation that are still very active today. This substantial quantity of study and the development of various avenues
of investigation are attributed to Gromov's efforts. Geometric notions were previously included into group theory prior to the
creation of geometric group theory. The works of writers like Dehn, Whitehead, van Kampen, and others include these ideas.
Furthermore, Thurston's work on 3-manifolds showed how a manifold's geometry may influence the algebraic and
computational properties of its fundamental group. However, Gromov's publications are the ones that mark the beginning of
these ideas' prominence. The aim of this article is to provide some light on how the algebraic structure of groups operating
on a space is affected by the topology and geometry of that space, and how this knowledge may be used to study group
behavior. I follow the strategy my mentor, Mladen Bestvina, taught me, which is to give more weight to illuminating cases
than general theory. You'll notice that I use this approach. Numerous aspects and areas of geometric group theory are
completely ignored in this review, as is the case with every study of a mathematical field. The last section offers a selection
of publications that serve as a concise bibliography of further readings on geometric group theory.

Groups and spaces: As was just discussed, geometric group theory attempts to comprehend the structure of a group via the
use of group actions performed on spaces. What kinds of insights may one possibly acquire from seeing how something is
carried out? Is there always going to be anything intriguing to look into? Now that we’ve had your attention, let’s look at
each of these questions.

An example SL(2,Z): Let’s take a look at an example of a group action that can be found in many different subfields of
mathematics in order to demonstrate how the topology of the space that a group acts on may have an effect on the structure
of the group. The group of matrices with integer entries and determinants equal to one shall be the focus of our attention here.

The following members make up what is known as the special linear group:

sp2,z) =4 |° ’ |a,b.c,d € Z and ad —be =1
c d

Is SL(2,7) finitely generated? That is, are there finitely many matrices 41,...,An € SL(2,Z) such that any matrix M € SL(2,7)
can be expressed as a product M = A4 + 1 j1...4 = 1 jk? (Note, each 4/ may appear multiple times). The answer is “yes” and
there is an algebraic approach to this problem, but let’s take a geometric perspective and consider an action of SL(2,Z) on a
metric space.

The space we will consider is the Farey complex which is constructed as follows. First, we start with a graph whose vertex
set is the set of rational numbers p g-always expressed in lowest terms-along with an additional point we denote 1 0. Edges
join two vertices p q and r s if ps — gr = £1. Figure 2 shows a portion of this graph, known as the Farey graph. As seen in
Figure 2, the edges in the Farey graph naturally form triangles. In fact, the vertices of any such triangle always have the form
pq,rsandp +rg+s. Forinstance, 1 0,0 1 and 1 1, and also 1 0, 1 1 and 2 1. There is an action of SL(2,Z) on the

Farey graph defined by permuting the vertices using the rule:
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Figure 2. The Farey graph and Farey complex
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and L° dJ are. Because of this, an action is defined on the Farey graph and, by extension, on the Farey complex. The
Farey complex is the space that is created when the triangles in the Farey graph are filled in. You have very certainly seen

this location and its associated activity previously, although in a different incarnation. In point of fact, the Farey complex
provides a tessellation of the hyperbolic plane via the use of ideal triangles, the vertices of which, in the model of the upper
half plane, are either rational or. In addition to this, the action that was described before is nothing more than the typical
action of two-by-two matrices with real entries and a positive determinant, which is accomplished by fractional linear

transformations of the top half plane. The conformal maps are as follows:

1 —iz 1412z
= il z) =
f(z) = —— and g(2) o

Now is the appropriate moment to investigate this activity. Let us designate by the symbol the triangle in the Farey complex
that contains the vertices 1 0 and 0 1, as well as the triangle in the Farey complex that contains the vertices 1 0 and 1 1.

Two claims are used to capture the action’s most important characteristics.
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Figure 3. The tessellation of the upper half plane by ideal triangles according to the Farey

algorithm Claim 1: For any triangle AO in the Farey complex, there is matrix M € SL(2,Z) such that MA =

AO.L Upr

ptr
a+s areand, where ps — gr= 1. Take M = [ [ and observe that MA = AO0.
Jlgs

e
@ 13

Indeed, suppose the vertices of A

A space for every group: We need to build a path-connected metric space that is capable of admitting a geometric action by
the group G if we want to have a finitely generated group G. This is comparable to the requirements for proving Cayley’s
theorem in classical group theory, which are as follows: A permutation group and every other group have an isomorphic
relationship. In the classical context, it is necessary for us to build a set that allows our group to carry out a permutation action
on it. There is just one option available, the group G should be the set, and left multiplication should be the operation. The
concept is analogous to what we experience right now. The metric space is constructed on top of the group, and the additional
portions of the space are generated by a generating set that has a limited size. The end product is referred to as a Cayley

graph. The specifics are outlined below.

Definition 1.1. Let G be a finitely generated group and let S © G be a finite generating set. The Cayley graph, denoted
I'(G,S), is the graph whose vertex set is G and where there is an edge joining vertices h1,h2 € Gifh— 11 h2 €S, ie., h2 =

hls for some generator s € S.

The group G acts on I'(G,S) by permuting the vertices via left multiplication. If vertices /#1,h2 € G are adjacent, then so are
the vertices ghl,gh2 as (ghl) — 1 (gh2) = h— 11 h2 and so the permutation action on the vertices extends to the entire graph.
As S generates G, the Cayley graph I'(G,S) is path-connected. Figure 4 illustrates the path connecting the identity element of
the group 1G to the element g = s1s2...sk, where each sj belongs to S U S — 1. The key point is that s1...sj is adjacent to s1...sj

+ 1.
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Figure 4. A path in the Cayley graph

Here are some examples of Cayley graphs.
1. Z and Z2: The formula S = 1 may be used for Z, while the formula S =[1 0], [0 1] can be used for Z2. Figure 5 depicts
these graphs for your viewing pleasure. There are several more potential generating sets; to see an example of one of them,

create the graph Z, 2, 3. This graph may be seen in the essay that Margalit and Thomas wrote [CM17, Office Hour 7].

.
3
3
3

Figure 5. Cayley graphs for Z and 7

2. Sym(3): We are able to utilize the generating sets S1 = (1 2),(2 3)” or S2 ="(1 2),(1 3)” for the symmetric group on
three elements. These graphs may be seen in Figure 6, which also include a listing of the elements in Sym(3) written in

cycle notation.

Figure 6. Cayley graphs for Sym(3)

3. F2: We are able to utilize a basis of the form S = a,b for the free group of rank two. Remember that the components in F2

have a one-to-one correlation with the alphabetic words a, al, b, bl.” These words are reduced in the sense that they do not
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include ”aal,” ”a 1a,” ”bb1,” or ”b 1 b.” For instance, a2 b 1a 1 b and b 2a 2 b 2 are both examples of items that may be
found in F2. The concatenation step is followed by the elimination of any prohibited words in the group operation. Because
the word that is reduced to represent an element is one of a kind, and because the pathways in the Cayley graphs read out a
word that represents an element, as illustrated in Figure 4, there is one and only one path that does not involve backtracking
that goes from 1F2 to any particular element. As a result, the Cayley graph represented by the coordinates F2, a, and b is a

tree. Figure 7 is an illustration of a section of this graph.

Figure 7. A Cayley graph for F2

There is a metric that can be applied to the vertices of (G,S), and it is defined as the minimal number of edges that must be
present in an edge route in order to connect any two specified vertices. This metric may be extended to the points that lie in
edges by associating (in an equivariant manner) each edge with the unit interval [0, 1] — R. This will allow the metric to be
applied to the points that lie in edges. On the other hand, having a metric merely on the vertices is sufficient for the majority
of applications in geometric group theory. Isometries constitute the action of G on the Cayley graph denoted by (G,S) when
using this metric. In order to complete the proof of Theorem 1, the last thing that needs to be shown is that the action of G
on (G,S) is geometric. It won’t be difficult for us to verify each of them in turn.

1. Cocompact: Let K € I'(G,S) be the union of the vertices {1G} U S together with the edges incident on 1G and s for

each s € S. As S is finite, K is compact and clearly S g € G gK =T(G,S).

2. Properly discontinuous: Suppose that ¥ € I'(G,S) is a finite subgraph and let n denote the number of vertices in Y.
If gV’ N Y 6=0Q then ghl = h2 for a pair of vertices hl, h2 in Y and hence g = h2A — 11. Thus the cardinality of {g € G|g¥ N
Y 6 =@} is at most n2.
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Groups and spaces with negative curvature: In the prior part of this chapter, we used a path-connected space and a
geometric action in order to deduce an algebraic consequence known as finite generation. The idea of a geometric action is
highly limiting, despite the fact that path-connectivity is a relatively unimportant topological quality. For example, in order
to satisfy the requirements of correct discontinuity, the subgroup that fixes a particular point has to be finite. What benefits
may be obtained from actions performed on spaces that have stricter constraints regarding the topology and geometry of the
space, but perhaps less restrictions regarding the dynamics of the action? The concept of negative curvature is a very valuable
geometric attribute, as it can be shown in this example. In this lecture, we are going to examine two examples of negative
curvature in geometric group theory. These examples are trees and hyperbolic spaces.

Actions on trees: Negative curvature, such as that found in the hyperbolic plane, may have a number of different effects on
the geometry of a space. Some of these effects include the uniqueness of geodesics, an exponential increase in the volume of
balls, and a uniform restriction on the diameter of an inscribed circle to a triangle. To be able to discuss the well-known
concept of curvature that arises from differential geometry, a space needs additional structure in addition to its regular metric.
In order to better understand the concept of negative curvature and how it can be stated just in terms of a distance function
on any arbitrary set, let’s first take a look at a straightforward illustration of a metric space that has the characteristics
described earlier for the hyperbolic plane. This illustration is a tree. In order to illustrate the effectiveness of group actions on
trees, let’s revisit the earlier example of SL(2,Z) and think about its finite-order elements. By “finite-order elements,” we
mean matrices for which some positive power is equal to the identity. This will allow us to see an example of the value of
group actions on trees. It’s not hard to figure out that 43 =/ = B2, which means that 46 = I and B4 = /, and that both A and B
have a finite order. Is there room for any more? There are some that are glaringly evident. It is abundantly evident that powers
of A and powers of B both have a finite order, as do their conjugates, CAkC 1 and CBkC 1, for any k that is less than Z and
C that is greater than SL(2,Z). But is that all there is? This last inquiry has a ”yes” as the correct response, and we will explain
why by applying the SL(2,Z) action to the Farey tree. The Farey complex is where one may get hold of this tree. Each triangle
in the Farey complex should be subdivided into three quadrilaterals that should meet pairwise along one of the legs of a
tripod. The Farey tree is the name given to the structure that is created when all of these tripods are stacked together. View

Figure 8 here.

26
Mathlogix publications



International Journal of Mathematical Theory and Applications
Vol 1, Issue 1 2025

Figure 8. The Farey tree

In a Farey tree, there are two distinct kinds of vertices: (red) degree three vertices, which originate from the middle of a
triangle, and (green) degree two vertices, which originate from the edge of a triangle. The vertex that corresponds to the
center of the triangle is denoted by the letter v, while the vertex that corresponds to the edge in the Farey complex between 0

1 and 1 0 is denoted by the letter w. Figure 8 has labels for each of them.

Our investigation into the effect that SL(2,Z) has on the Farey complex led us to the conclusion that every vertex in the Farey
tree can be expressed as a translation of either v or w. This is evident both from Claim 1 and from the observation that A
cyclically permutes the edges of and, as a result, each and every vertex that is near to v. Furthermore, we may deduce from
Claim 2 that the stabilizer of v is the cyclic subgroup of order 6 created by A, and that the stabilizer of w is the cyclic subgroup
of order 4 generated by B. This allows us to state both of these propositions as true. The following assertion is an essential
aspect of an action that is performed on a tree.

Claim 3. Let’s say that a member of the group G prunes a tree. In the event that g G has a finite order, then g will have a
fixed point.

The key fact here is that a finite set of points x1,...,.xn in a tree has a unique center, i.e., a point c that minimizes the quantity
max{d(c,xj)j =1,...,n}.

The center is easy to characterize. Suppose that x1 and x2 maximize d(xj,xj0) for j, j =0,1,...,n. One can show that the center
is the unique point ¢ with d(c,x1) = d(c,x2) = 12d(x1,x2). Now fix a point x in the tree and let c be the center of the set O =
{x,gx,...,gn — 1x} where n is the order of g. Since the action is by isometries, we must have that gc is the center of the set gO.
But g permutes the points in O, i.e., g0 = O, and so gc = c.

Applying Claim 3 to the action of SL(2,Z) on the Farey tree, we see if M € SL(2,Z) has finite order, then Mx = x for some
point x in this tree. If M fixes a point in the interior of an edge, then it must fix one of the incident vertices as well since these
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vertices have different degrees and cannot be interchanged by M. So we may assume that x is a vertex of the Farey tree. As
every vertex is a translate of v or w, we have that x = Cv or x = Cw for some matrix C € SL(2,Z). In the former, we observe
that (C— IMCyv=C— IMx=C— 1x=v and so M = CAkC — 1 for some k € Z. Similarly, in the latter, we conclude that M =
CBkC — 1 for some k € Z. Hence every finite-order element in SL(2,Z) is conjugate to a power of A or B. This is exactly what
we desired to show.

The Farey tree is affected in a geometric way by the function SL(2,Z). The line of reasoning that we presented demonstrates
that if a group works geometrically on a tree, then there can only be a finitely large number of conjugacy classes for elements
of a finite order. In point of fact, in accordance with Claim 3, and given that the action is cocompact, every finite order
element may be conjugated into any one of an infinite number of stabilizer subgroups. Because the action itself is correctly
discontinuous, each of these subgroups is finite, and hence, the outcome is something that should be expected. To get to the
same result, we may arrive at the same conclusion by substituting the assumption of appropriate discontinuity of the action
with the assumption that each point stabilizer subgroup has a finitely large number of conjugacy classes of elements of a

finite order.

Theorem 1.2. Let s say that G exhibits cocompact behavior on a tree. G is one of the point stabilizers that must have finitely

many conjugacy classes of finite-order elements if every other point stabilizer must also have them.

A popular paradigm in geometric group theory is shown by theorem 2, which may be found below. If a given property P holds
for groups that act geometrically on a certain kind of metric space, then the same should be true for a group G that acts on
this same type of metric space as long as certain subgroups (such as point stabilizers) have property P. This is because groups
operating geometrically on a particular type of metric space should have the same property P. In other words, we should be
able to promote a property P from a collection of subgroups to the full group G if we can discover the right space in which
these subgroups are the point stabilizers. This should allow us to do so. This thought brings to mind a practical tactic. Suppose
there is a family of groups that can be organized into the following hierarchy: GO, G1, G2, etc., and that the groups in GO
operate geometrically on a certain kind of metric space, and that the groups in Gk likewise act on this same kind of metric
space, but with point stabilizers that belong to Gk1. If we are successful in validating the paradigm described above for this
particular kind of metric space, then we will have an inductive technique to demonstrate that all of the groups that belong to
this family have a certain quality or structure. In the next paragraph, we will discuss an instance in which the use of this tactic
has shown to be very beneficial; specifically, the mapping class group of an orientable surface. Actions on J-hyperbolic
spaces: Although actions on trees are enjoyable to work with, the class of groups that they make up is somewhat limiting.
There are a lot of intriguing and natural groups where any action on a tree has a global fixed point, and one of such groups is
the tree. For instance, when n is less than three, this is true for SL(n,Z). Actions that have a global fixed point are unlikely to
result in significant gains in most circumstances. Gromov’s influential essay [Gro87] presented a concept of negative
curvature, which unifies essential properties of the hyperbolic plane, trees, and small cancellation groups. Small cancellation
groups are a thoroughly studied class of groups that were investigated in the latter half of the 20™ century, when geometric
notions and techniques were just beginning to gain traction. Gromov’s concept of a-hyperbolic space is based on the
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assumption that one of the helpful implications of negative curvature from the hyperbolic plane may be used as a definition
for a metric space. This was Gromov’s main motivation for developing this definition. Gromov provided such a description
by relying merely on a metric d applied to an arbitrary set X; however, the most frequent formulation that is used-and one
that is applicable to practically all of the spaces that one encounters in geometric group theory-requires a geodesic metric
space, which is defined as follows. Gromov’s definition is the only one that uses a metric d applied to an arbitrary set. A
function p : Y — X is considered to be a geodesic in a metric space

(X,d), provided that Y is a connected subset of R and that d(p(s),p(f)) = |ts| holds true for any s and t that fall inside Y. A metric
space (X,d) is said to be geodesic if and only if there exists a geodesic p : [0,L] — X for every pair of coordinates x and y in
the space X, where p(0) =x and p(L) = y. A geodesic metric space may be defined as a connected graph, and more specifically
as the Cayley graph of a finitely formed group. Using geodesic triangles, divergence of geodesics, or closest point projections
to geodesics are three of the many formulations that are equivalent for a-hyperbolic metric space. There are many more
formulations. We are going to explain the most popular formulation, which makes use of geodesic triangles and is something

Gromov attributes to Rips. Any geodesic in X that goes from a to b may be represented by the notation [«,b] in this statement.

Definition 1.3. Let (X,d) be a geodesic metric space. A geodesic triangle A(a,b,c) is o-thin if the 6-neighborhood of any two
of the edges contains the third. That is, for all x € [a,c] there is an x0 € [a,b]U[b,c], where d(x,x0) < J. A o-hyperbolic space

is a geodesic metric space where every geodesic triangle is o-thin.

The key point in the definition is that the same 6 works for every geodesic triangle, no matter how long the sides are. See

Figure 9. Here are some examples of J-hyperbolic spaces.

Figure 9. A /-thin triangle

1. A tree has a hyperbolic degree of zero because every geodesic triangle is a tripod, and hence every side is included in the
union of the other two sides. Look at figure number 10. We conceive of narrower triangles as an indication of the space being
more negatively curved; this is true for the scalar curvature in Riemannian geometry; hence, in this sense, trees are negatively

curved to an extreme degree.

29
Mathlogix publications



International Journal of Mathematical Theory and Applications
Vol 1, Issue 1 2025

Figure 10. One of the most common geodesic triangles seen in trees

\/

2. The hyperbolic plane is log(1+ 2)-hyperbolic. As every geodesic triangle is contained in an ideal triangle, we only
have to compute J for an ideal triangle, which is a fun exercise.

3. The Farey graph is 1-hyperbolic. This follows as the removal of any edge and its incident vertices disconnects the

Fareygraph.

Figure 11. The ideal triangles that exist on the hyperbolic plane have a thickness of log(1 + 2)

As a point of comparison, R 2 calculated using the Euclidean metric is not hyperbolic for any value of. In point of fact, the
geodesic triangle with the vertices (0,0), (r,0), and (0,#) can only be considered-thin if the value of is less than #/2. Consider
the point (n/2,n/2) if you want to understand this clearly. The following is a list of common questions that, when attempted

to be answered using actions on hyperbolic spaces, often fall into one of the following categories:
1. Algorithmic: When do two words in a generating set represent the same element or conjugate elements?
2. Local-to-global: Are paths in the Cayley graph that are locally geodesics globally geodesics as well?

3. Rigidity: If two groups have geometrically similar Cayley graphs, are the groups algebraically similar? Can we

characterize homomorphisms to and from the group?

We will discuss in turn geometric actions and other types of actions on d-hyperbolic spaces.
Geometric actions on J-hyperbolic spaces: A metric space is said to be appropriate if closed balls can be compressed inside
it. If a group G works geometrically on a proper-hyperbolic space 2, then the group is said to be hyperbolic. The term

“hyperbolic group” refers to both free groups and the basic groups of closed hyperbolic manifolds. Given that we began this
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section by pointing out that there are not always beneficial tree actions, it is reasonable to inquire as to the frequency with
which hyperbolic groups occur. Gromov developed a model of a “random finitely presented group” in Chapter 9 of Gro93.
This model contains a parameter known as the ’density” that ranges from 0 to 1 and governs the number of relators in relation
to the number of generators. Gromov demonstrated that a random group is both infinite and hyperbolic when d is less than
half. (For those who are wondering, a random group has a maximum of two components whenever d is greater than 1/2). As
a result, it is accurate to assert that hyperbolic groups are quite widespread. One definition of a hyperbolic group is identical
to the statement that the group G is finitely generated and that the Cayley graph (G, S) is hyperbolic for every finite generating
set that is a member of the group G. In addition, the word ”some” in the above statement might be substituted by the word
“every.” There are several in-depth studies that are centered on hyperbolic groups, in addition to Gromov’s original article,
which explains how these groups meet a lengthy number of important features. See, for example, the comments that were
edited by Short and published in ABC + 91; the chapters written by Bridson and Haefliger and published in BH99; and the
references that are included within these works. from hyperbolic groups are characterized by a geometric condition (in many
different ways that are equal to one another), academics have pondered from the beginning of their existence whether or not
there is an algebraic characterisation. Locating algebraic roadblocks is not all that difficult. The centralizer of an infinite-
order element is often one of the first to be encountered. If G is a hyperbolic group and the subgroup g of G has an infinite
order, then the cyclic subgroup hgi, which was produced by g, will have a finite index in the centralizer of g, which is CG(g).
To refresh your memory, the centralizer of g is the subgroup of G that consists of elements h that belong to G and has the
equation g = gh. The concept that underlies this fact provides a clear illustration of a common geometric argument by making
use of the thin triangle condition. Assuming that g = gh, we should look at the four vertices 1G, g k, hgk, and h in the Cayley
graph (G, S) for a value of k that is very big. It may be deduced from the fact that ~gk = g kh that these four locations are
located on a rectangle. A geodesic [1G, gk] and its translation by h, the geodesic [h, hgk], are responsible for the formation
of the horizontal sides. Use a geodesic with the coordinates [1G, h] and its translate by g k to get the vertical sides. Because
of the commutativity assumption, the translate by g k yields a geodesic that goes from g k to g kh. However, the latter point

is equivalent to hgk. Look at figure 12 here.

Figure 12. A commuting rectangle in I'(G,S)

Other actions on J-hyperbolic spaces: Numerous natural groups have subgroups that are isomorphic to Z 2, and as a result,
these natural groups cannot be hyperbolic. Is it possible for us to continue to examine these groupings using negative
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curvature? Let’s take an example of an important group in low-dimensional topology while relaxing the constraint of a
geometric action and the necessity of a correct metric space. The group of orientation-preserving homeomorphisms of modulo
isotopy is the mapping class group MCG() of an orientable surface, which may or may not have a border. That is to say, two
homeomorphisms of that determine the same mapping class are those that can be continuously deformed into one another in
such a manner that every intermediate map along the way is likewise a homeomorphism. When has a border that is not empty,
it is necessary for the homeomorphisms and the isotopies to have the same identity on each component of the boundary. In
order to make this debate more manageable, let’s just assume that is compact. The study of 3-manifolds, algebraic geometry,
cryptography, symplectic geometry, dynamics, and configuration spaces all make use of this group. It is not difficult to locate
subgroups in most mapping class groups that are isomorphic to Z 2 by making use of homeomorphisms that are supported
on disjoint subsurfaces in. As a result, the MCG() function is not hyperbolic in general.

The mapping class group has an effect on the graph of the curve C(). A simple closed curve is an embedding of the circle S 1
that does not include within itself either a disk nor an annulus (the latter only arises when has a border). The curve graph is
the graph whose vertex set is the set of isotopy classes of simple closed curves. Two such curves, [¢0] and [c1], are linked by
an edge if they have representations that do not have a disjoint relationship with one another. Figure 13 displays many curves
on, each of which is accompanied by the subgraph of C() that corresponds to it. When a mapping class [f] is applied to a
vertex [c] in the curve graph, the result is that the simple closed curve is transferred to the vertex’s image, as shown by the
equation [f] [c¢] = [f{c)]. Because homeomorphisms take disjoint curves and transform them into other disjoint curves, this
also applies to an operation on C().

Any two non-isotopic simple closed curves will inevitably cross when the genus of is equal to 1, which is the case when is a
torus S 1 S 1. Because of this, the definition given above will produce a graph that does not include any edges. In this
particular instance, the definition is modified slightly such that [c0] and [c1] are considered to be united by an edge if they
have representatives that overlap once. Let’s take a more in-depth look at this graph of a curve. Isotopic to a curve that wraps

p times around the first S 1 factor is any simple closed curve on the torus in its simplest form.
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Figure 13. A portion of the curve graph for a genus 2 surface

and q iterations revolving around the second S 1 factor in a context in which p and q are approximately prime. Since it makes
no difference either way the vector is oriented, we may safely assume that q is positive. To put it another way, isotopy classes
of simple closed curves on the torus are parameterized by the set of rational numbers p q coupled with an extra element 1 0.
In addition, the expression “’ps qr” represents the number of times that the simple closed curves p and q and r and s cross.
Does this ring a bell? Yes, you read it correctly: the Farey graph is the curve graph of the torus! In point of fact, the mapping
class group of the torus is isomorphic to SL(2,Z), meaning that both actions are equivalent to one another. The influence of
SL(2,Z) on the Farey graph is a good illustration of some of the most important characteristics of C() as well as the effect that
MCG() has on C(). First, we found that the curve graph has a hyperbolic shape, similar to that of the Farey graph. This
astounding truth was first shown by Masur and Minsky [MM99], however it has subsequently been disproven on several
occasions. (Hennsel, Przytycki, and Webb provided the most accurate estimate of when they demonstrated that is less than
17 [HPW15])). It is hard to emphasize the significance of this finding when it comes to the investigation of the mapping class
group, the geometry of 3-manifolds, and geometric group theory in general. Second, the discontinuity in the action is not
executed correctly. In point of fact, there is no limit to the vertex stabilizers. However, this is not a flaw but rather a benefit!

Homeomorphisms are exactly what they sound like when they fix a straightforward closed curve like c.

2. Conclusion

It is our hope that the material offered here has helped you better appreciate how a group's algebraic structure and properties
may be impacted by the topology and geometry of the space they operate on. Geometric group analysis is a rapidly developing
field of research. This is partly because the discipline generates a large number of issues concerning the geometry of finitely
formed groups, but it has also gained more attention because of its relevance to other areas of mathematics. In other words,
one factor contributing to the increase in interest is the quantity of questions the topic generates. This argument is dramatically
illustrated by the recent confirmation of the Virtual Haken Conjecture in hyperbolic geometry. This was shown by Agol
[Ago13] using tools created by Scott, Sageev, Wise, and others and taken from geometric group theory. I strongly advise
reading Bestvina's review article [Bes14] for a thorough examination of this connection. The study of geometric groups has
several aspects, and hyperbolicity is one of them. Geometric group theory has subfields that draw on ideas and techniques
from topology (dimension, fractals), dynamics (entropy, topological Markov chains), geometry (isoperimetric functions, Lie
theory), analysis (L p-spaces, C and von Neumann algebras), and algebra (algebraic geometry, homological algebra). The
books listed below are arranged by the year of their first publication for anyone who would want to learn more about
geometric group theory.
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