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Abstract: Geometric group theory is an area of mathematics concerned with the study of finitely formed groups. When the 

groups in question are realized as geometric symmetries or continuous transformations of some spaces, this area 

of mathematics explores the relationships between the algebraic properties of these groups and the topological 

and geometric properties of the spaces on which they act. Early examples of this topic may be found in William 

Rowan Hamilton's 1856 icosian calculus, in which he examined the icosahedral symmetry group using the edge 

graph of the dodecahedral lattice. Walther von Dyck, a pupil of Felix Klein, first conducted systematic research 

in this field in the early 1880s. Combinatorial group theory, which mainly focused on examining the 

characteristics of discrete groups by examining group presentations, gave rise to geometric group theory. The 

topic of geometric group theory is now largely absorbing the study of combinatorial group theory. Furthermore, 

"geometric group theory" started to include the study of discrete groups using probabilistic, measure-theoretic, 

arithmetic, analytic, and other techniques that are not often used in combinatorial group theory. 

 

Keywords: Geometric, Group Theory, Algebraic application. 

 

1. Introduction 

Groups and locations have a tight connection. There are several communities associated with a certain place or region. We 

may investigate the group of symmetries, which is also called the group of structure-preserving bijections. In addition to the 

homology and cohomology groups, to name a few more, there is the fundamental group. According to Hermann Weyl, these 

groups might provide "a deep insight" into a particular place. An excellent example of this phenomenon may be found in the 

study of knots. For instance, algebraic invariants that take the form of groups demonstrate that the trefoil knot cannot be 

unraveled (see picture 1). 

 

Figure 1. Groups show that these knots are distinct 

The field of geometric group theory takes a fresh look at the connection between spaces and groups. The core idea of 

geometric group theory is to adopt the following philosophy rather than using the algebraic structure and properties of groups 

to analyze spaces. Using your results, explore the geometry and topology of the spaces the groups work on. In other words, 
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groups are the main subjects of study, and the techniques, instruments, and procedures used to investigate them are dynamical, 

geometrical, and topological by definition. Compared to the titles of other branches of mathematics, the word "geometric 

group theory" is relatively new1. The notion of hyperbolic groups and the study of finitely generated groups as metric spaces 

were first presented by Gromov in his major works [Gro87, Gro93], which sparked a great deal of research and established 

areas of investigation that are still very active today. This substantial quantity of study and the development of various avenues 

of investigation are attributed to Gromov's efforts. Geometric notions were previously included into group theory prior to the 

creation of geometric group theory. The works of writers like Dehn, Whitehead, van Kampen, and others include these ideas. 

Furthermore, Thurston's work on 3-manifolds showed how a manifold's geometry may influence the algebraic and 

computational properties of its fundamental group. However, Gromov's publications are the ones that mark the beginning of 

these ideas' prominence. The aim of this article is to provide some light on how the algebraic structure of groups operating 

on a space is affected by the topology and geometry of that space, and how this knowledge may be used to study group 

behavior. I follow the strategy my mentor, Mladen Bestvina, taught me, which is to give more weight to illuminating cases 

than general theory. You'll notice that I use this approach. Numerous aspects and areas of geometric group theory are 

completely ignored in this review, as is the case with every study of a mathematical field. The last section offers a selection 

of publications that serve as a concise bibliography of further readings on geometric group theory. 

Groups and spaces: As was just discussed, geometric group theory attempts to comprehend the structure of a group via the 

use of group actions performed on spaces. What kinds of insights may one possibly acquire from seeing how something is 

carried out? Is there always going to be anything intriguing to look into? Now that we’ve had your attention, let’s look at 

each of these questions. 

An example SL(2,Z): Let’s take a look at an example of a group action that can be found in many different subfields of 

mathematics in order to demonstrate how the topology of the space that a group acts on may have an effect on the structure 

of the group. The group of matrices with integer entries and determinants equal to one shall be the focus of our attention here. 

The following members make up what is known as the special linear group: 

 

Is SL(2,Z) finitely generated? That is, are there finitely many matrices A1,...,An ∈ SL(2,Z) such that any matrix M ∈ SL(2,Z) 

can be expressed as a product M = A ± 1 j1...A ± 1 jk? (Note, each Aj may appear multiple times). The answer is “yes” and 

there is an algebraic approach to this problem, but let’s take a geometric perspective and consider an action of SL(2,Z) on a 

metric space. 

The space we will consider is the Farey complex which is constructed as follows. First, we start with a graph whose vertex 

set is the set of rational numbers p q-always expressed in lowest terms-along with an additional point we denote 1 0. Edges 

join two vertices p q and r s if ps − qr = ±1. Figure 2 shows a portion of this graph, known as the Farey graph. As seen in 

Figure 2, the edges in the Farey graph naturally form triangles. In fact, the vertices of any such triangle always have the form 

p q, r s and p + rq + s. For instance, 1 0, 0 1 and 1 1, and also 1 0, 1 1 and 2 1. There is an action of SL(2,Z) on the 

Farey graph defined by permuting the vertices using the rule: 
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It is easy to check that two vertices  and  are connected by an edge only if their images  

 

Figure 2. The Farey graph and Farey complex 

and  are. Because of this, an action is defined on the Farey graph and, by extension, on the Farey complex. The 

Farey complex is the space that is created when the triangles in the Farey graph are filled in. You have very certainly seen 

this location and its associated activity previously, although in a different incarnation. In point of fact, the Farey complex 

provides a tessellation of the hyperbolic plane via the use of ideal triangles, the vertices of which, in the model of the upper 

half plane, are either rational or. In addition to this, the action that was described before is nothing more than the typical 

action of two-by-two matrices with real entries and a positive determinant, which is accomplished by fractional linear 

transformations of the top half plane. The conformal maps are as follows: 

 

Now is the appropriate moment to investigate this activity. Let us designate by the symbol the triangle in the Farey complex 

that contains the vertices 1 0 and 0 1, as well as the triangle in the Farey complex that contains the vertices 1 0 and 1 1. 

Two claims are used to capture the action’s most important characteristics. 
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Figure 3. The tessellation of the upper half plane by ideal triangles according to the Farey 

algorithm Claim 1: For any triangle ∆0 in the Farey complex, there is matrix M ∈ SL(2,Z) such that M∆ = 

∆0.   p r 

′ 

Indeed, suppose the vertices of ∆ areand, where ps − qr = 1. Take M =   and observe that M∆ = ∆0. 

  q s 

A space for every group: We need to build a path-connected metric space that is capable of admitting a geometric action by 

the group G if we want to have a finitely generated group G. This is comparable to the requirements for proving Cayley’s 

theorem in classical group theory, which are as follows: A permutation group and every other group have an isomorphic 

relationship. In the classical context, it is necessary for us to build a set that allows our group to carry out a permutation action 

on it. There is just one option available, the group G should be the set, and left multiplication should be the operation. The 

concept is analogous to what we experience right now. The metric space is constructed on top of the group, and the additional 

portions of the space are generated by a generating set that has a limited size. The end product is referred to as a Cayley 

graph. The specifics are outlined below. 

Definition 1.1. Let G be a finitely generated group and let S ⊆ G be a finite generating set. The Cayley graph, denoted 

Γ(G,S), is the graph whose vertex set is G and where there is an edge joining vertices h1,h2 ∈ G if h − 1 1 h2 ∈ S, i.e., h2 = 

h1s for some generator s ∈ S. 

The group G acts on Γ(G,S) by permuting the vertices via left multiplication. If vertices h1,h2 ∈ G are adjacent, then so are 

the vertices gh1,gh2 as (gh1) − 1 (gh2) = h − 1 1 h2 and so the permutation action on the vertices extends to the entire graph. 

As S generates G, the Cayley graph Γ(G,S) is path-connected. Figure 4 illustrates the path connecting the identity element of 

the group 1G to the element g = s1s2...sk, where each sj belongs to S ∪ S − 1. The key point is that s1...sj is adjacent to s1...sj 

+ 1. 



International Journal of Mathematical Theory and Applications 

Vol 1, Issue 1 2025  

 

24  
Mathlogix publications  

 

 

Figure 4. A path in the Cayley graph 

Here are some examples of Cayley graphs. 

1. Z and Z2: The formula S = 1 may be used for Z, while the formula S = [1 0], [0 1] can be used for Z2. Figure 5 depicts 

these graphs for your viewing pleasure. There are several more potential generating sets; to see an example of one of them, 

create the graph Z, 2, 3. This graph may be seen in the essay that Margalit and Thomas wrote [CM17, Office Hour 7]. 

 

Figure 5. Cayley graphs for Z and Z2 

2. Sym(3): We are able to utilize the generating sets S1 = ”(1 2),(2 3)” or S2 = ”(1 2),(1 3)” for the symmetric group on 

three elements. These graphs may be seen in Figure 6, which also include a listing of the elements in Sym(3) written in 

cycle notation. 

 

Figure 6. Cayley graphs for Sym(3) 

3. F2: We are able to utilize a basis of the form S = a,b for the free group of rank two. Remember that the components in F2 

have a one-to-one correlation with the alphabetic words ”a, a1, b, b1.” These words are reduced in the sense that they do not 
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include ”aa1,” ”a 1a,” ”bb1,” or ”b 1 b.” For instance, a 2 b 1a 1 b and b 2a 2 b 2 are both examples of items that may be 

found in F2. The concatenation step is followed by the elimination of any prohibited words in the group operation. Because 

the word that is reduced to represent an element is one of a kind, and because the pathways in the Cayley graphs read out a 

word that represents an element, as illustrated in Figure 4, there is one and only one path that does not involve backtracking 

that goes from 1F2 to any particular element. As a result, the Cayley graph represented by the coordinates F2, a, and b is a 

tree. Figure 7 is an illustration of a section of this graph. 

 

Figure 7. A Cayley graph for F2 

There is a metric that can be applied to the vertices of (G,S), and it is defined as the minimal number of edges that must be 

present in an edge route in order to connect any two specified vertices. This metric may be extended to the points that lie in 

edges by associating (in an equivariant manner) each edge with the unit interval [0,1] → R. This will allow the metric to be 

applied to the points that lie in edges. On the other hand, having a metric merely on the vertices is sufficient for the majority 

of applications in geometric group theory. Isometries constitute the action of G on the Cayley graph denoted by (G,S) when 

using this metric. In order to complete the proof of Theorem 1, the last thing that needs to be shown is that the action of G 

on (G,S) is geometric. It won’t be difficult for us to verify each of them in turn. 

1. Cocompact: Let K ⊆ Γ(G,S) be the union of the vertices {1G} ∪ S together with the edges incident on 1G and s for 

each s ∈ S. As S is finite, K is compact and clearly S g ∈ G gK = Γ(G,S). 

2. Properly discontinuous: Suppose that Y ⊆ Γ(G,S) is a finite subgraph and let n denote the number of vertices in Y. 

If gY ∩ Y 6 = ∅ then gh1 = h2 for a pair of vertices h1, h2 in Y and hence g = h2h − 11. Thus the cardinality of {g ∈ G|gY ∩ 

Y 6 = ∅} is at most n2. 
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Groups and spaces with negative curvature: In the prior part of this chapter, we used a path-connected space and a 

geometric action in order to deduce an algebraic consequence known as finite generation. The idea of a geometric action is 

highly limiting, despite the fact that path-connectivity is a relatively unimportant topological quality. For example, in order 

to satisfy the requirements of correct discontinuity, the subgroup that fixes a particular point has to be finite. What benefits 

may be obtained from actions performed on spaces that have stricter constraints regarding the topology and geometry of the 

space, but perhaps less restrictions regarding the dynamics of the action? The concept of negative curvature is a very valuable 

geometric attribute, as it can be shown in this example. In this lecture, we are going to examine two examples of negative 

curvature in geometric group theory. These examples are trees and hyperbolic spaces. 

Actions on trees: Negative curvature, such as that found in the hyperbolic plane, may have a number of different effects on 

the geometry of a space. Some of these effects include the uniqueness of geodesics, an exponential increase in the volume of 

balls, and a uniform restriction on the diameter of an inscribed circle to a triangle. To be able to discuss the well-known 

concept of curvature that arises from differential geometry, a space needs additional structure in addition to its regular metric. 

In order to better understand the concept of negative curvature and how it can be stated just in terms of a distance function 

on any arbitrary set, let’s first take a look at a straightforward illustration of a metric space that has the characteristics 

described earlier for the hyperbolic plane. This illustration is a tree. In order to illustrate the effectiveness of group actions on 

trees, let’s revisit the earlier example of SL(2,Z) and think about its finite-order elements. By ”finite-order elements,” we 

mean matrices for which some positive power is equal to the identity. This will allow us to see an example of the value of 

group actions on trees. It’s not hard to figure out that A3 = I = B2, which means that A6 = I and B4 = I, and that both A and B 

have a finite order. Is there room for any more? There are some that are glaringly evident. It is abundantly evident that powers 

of A and powers of B both have a finite order, as do their conjugates, CAkC 1 and CBkC 1, for any k that is less than Z and 

C that is greater than SL(2,Z). But is that all there is? This last inquiry has a ”yes” as the correct response, and we will explain 

why by applying the SL(2,Z) action to the Farey tree. The Farey complex is where one may get hold of this tree. Each triangle 

in the Farey complex should be subdivided into three quadrilaterals that should meet pairwise along one of the legs of a 

tripod. The Farey tree is the name given to the structure that is created when all of these tripods are stacked together. View 

Figure 8 here. 
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Figure 8. The Farey tree 

In a Farey tree, there are two distinct kinds of vertices: (red) degree three vertices, which originate from the middle of a 

triangle, and (green) degree two vertices, which originate from the edge of a triangle. The vertex that corresponds to the 

center of the triangle is denoted by the letter v, while the vertex that corresponds to the edge in the Farey complex between 0 

1 and 1 0 is denoted by the letter w. Figure 8 has labels for each of them. 

Our investigation into the effect that SL(2,Z) has on the Farey complex led us to the conclusion that every vertex in the Farey 

tree can be expressed as a translation of either v or w. This is evident both from Claim 1 and from the observation that A 

cyclically permutes the edges of and, as a result, each and every vertex that is near to v. Furthermore, we may deduce from 

Claim 2 that the stabilizer of v is the cyclic subgroup of order 6 created by A, and that the stabilizer of w is the cyclic subgroup 

of order 4 generated by B. This allows us to state both of these propositions as true. The following assertion is an essential 

aspect of an action that is performed on a tree. 

Claim 3. Let’s say that a member of the group G prunes a tree. In the event that g G has a finite order, then g will have a 

fixed point. 

The key fact here is that a finite set of points x1,...,xn in a tree has a unique center, i.e., a point c that minimizes the quantity 

max{d(c,xj)|j = 1,...,n}. 

The center is easy to characterize. Suppose that x1 and x2 maximize d(xj,xj0) for j, j = 0,1,...,n. One can show that the center 

is the unique point c with d(c,x1) = d(c,x2) = 12d(x1,x2). Now fix a point x in the tree and let c be the center of the set O = 

{x,gx,...,gn − 1x} where n is the order of g. Since the action is by isometries, we must have that gc is the center of the set gO. 

But g permutes the points in O, i.e., gO = O, and so gc = c. 

Applying Claim 3 to the action of SL(2,Z) on the Farey tree, we see if M ∈ SL(2,Z) has finite order, then Mx = x for some 

point x in this tree. If M fixes a point in the interior of an edge, then it must fix one of the incident vertices as well since these 
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vertices have different degrees and cannot be interchanged by M. So we may assume that x is a vertex of the Farey tree. As 

every vertex is a translate of v or w, we have that x = Cv or x = Cw for some matrix C ∈ SL(2,Z). In the former, we observe 

that (C − 1MC)v = C − 1Mx = C − 1x = v and so M = CAkC − 1 for some k ∈ Z. Similarly, in the latter, we conclude that M = 

CBkC − 1 for some k ∈ Z. Hence every finite-order element in SL(2,Z) is conjugate to a power of A or B. This is exactly what 

we desired to show. 

The Farey tree is affected in a geometric way by the function SL(2,Z). The line of reasoning that we presented demonstrates 

that if a group works geometrically on a tree, then there can only be a finitely large number of conjugacy classes for elements 

of a finite order. In point of fact, in accordance with Claim 3, and given that the action is cocompact, every finite order 

element may be conjugated into any one of an infinite number of stabilizer subgroups. Because the action itself is correctly 

discontinuous, each of these subgroups is finite, and hence, the outcome is something that should be expected. To get to the 

same result, we may arrive at the same conclusion by substituting the assumption of appropriate discontinuity of the action 

with the assumption that each point stabilizer subgroup has a finitely large number of conjugacy classes of elements of a 

finite order. 

Theorem 1.2. Let’s say that G exhibits cocompact behavior on a tree. G is one of the point stabilizers that must have finitely 

many conjugacy classes of finite-order elements if every other point stabilizer must also have them. 

A popular paradigm in geometric group theory is shown by theorem 2, which may be found below. If a given property P holds 

for groups that act geometrically on a certain kind of metric space, then the same should be true for a group G that acts on 

this same type of metric space as long as certain subgroups (such as point stabilizers) have property P. This is because groups 

operating geometrically on a particular type of metric space should have the same property P. In other words, we should be 

able to promote a property P from a collection of subgroups to the full group G if we can discover the right space in which 

these subgroups are the point stabilizers. This should allow us to do so. This thought brings to mind a practical tactic. Suppose 

there is a family of groups that can be organized into the following hierarchy: G0, G1, G2, etc., and that the groups in G0 

operate geometrically on a certain kind of metric space, and that the groups in Gk likewise act on this same kind of metric 

space, but with point stabilizers that belong to Gk1. If we are successful in validating the paradigm described above for this 

particular kind of metric space, then we will have an inductive technique to demonstrate that all of the groups that belong to 

this family have a certain quality or structure. In the next paragraph, we will discuss an instance in which the use of this tactic 

has shown to be very beneficial; specifically, the mapping class group of an orientable surface. Actions on δ-hyperbolic 

spaces: Although actions on trees are enjoyable to work with, the class of groups that they make up is somewhat limiting. 

There are a lot of intriguing and natural groups where any action on a tree has a global fixed point, and one of such groups is 

the tree. For instance, when n is less than three, this is true for SL(n,Z). Actions that have a global fixed point are unlikely to 

result in significant gains in most circumstances. Gromov’s influential essay [Gro87] presented a concept of negative 

curvature, which unifies essential properties of the hyperbolic plane, trees, and small cancellation groups. Small cancellation 

groups are a thoroughly studied class of groups that were investigated in the latter half of the 20th century, when geometric 

notions and techniques were just beginning to gain traction. Gromov’s concept of a-hyperbolic space is based on the 
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assumption that one of the helpful implications of negative curvature from the hyperbolic plane may be used as a definition 

for a metric space. This was Gromov’s main motivation for developing this definition. Gromov provided such a description 

by relying merely on a metric d applied to an arbitrary set X; however, the most frequent formulation that is used-and one 

that is applicable to practically all of the spaces that one encounters in geometric group theory-requires a geodesic metric 

space, which is defined as follows. Gromov’s definition is the only one that uses a metric d applied to an arbitrary set. A 

function p : Y → X is considered to be a geodesic in a metric space 

(X,d), provided that Y is a connected subset of R and that d(p(s),p(t)) = |ts| holds true for any s and t that fall inside Y. A metric 

space (X,d) is said to be geodesic if and only if there exists a geodesic p : [0,L] → X for every pair of coordinates x and y in 

the space X, where p(0) = x and p(L) = y. A geodesic metric space may be defined as a connected graph, and more specifically 

as the Cayley graph of a finitely formed group. Using geodesic triangles, divergence of geodesics, or closest point projections 

to geodesics are three of the many formulations that are equivalent for a-hyperbolic metric space. There are many more 

formulations. We are going to explain the most popular formulation, which makes use of geodesic triangles and is something 

Gromov attributes to Rips. Any geodesic in X that goes from a to b may be represented by the notation [a,b] in this statement. 

Definition 1.3. Let (X,d) be a geodesic metric space. A geodesic triangle ∆(a,b,c) is δ-thin if the δ-neighborhood of any two 

of the edges contains the third. That is, for all x ∈ [a,c] there is an x0 ∈ [a,b]∪[b,c], where d(x,x0) ≤ δ. A δ-hyperbolic space 

is a geodesic metric space where every geodesic triangle is δ-thin. 

The key point in the definition is that the same δ works for every geodesic triangle, no matter how long the sides are. See 

Figure 9. Here are some examples of δ-hyperbolic spaces. 

 

Figure 9. A δ-thin triangle 

1. A tree has a hyperbolic degree of zero because every geodesic triangle is a tripod, and hence every side is included in the 

union of the other two sides. Look at figure number 10. We conceive of narrower triangles as an indication of the space being 

more negatively curved; this is true for the scalar curvature in Riemannian geometry; hence, in this sense, trees are negatively 

curved to an extreme degree. 
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Figure 10. One of the most common geodesic triangles seen in trees 

√ 

2. The hyperbolic plane is log(1+ 2)-hyperbolic. As every geodesic triangle is contained in an ideal triangle, we only 

have to compute δ for an ideal triangle, which is a fun exercise. 

3. The Farey graph is 1-hyperbolic. This follows as the removal of any edge and its incident vertices disconnects the 

Fareygraph. 

 

Figure 11. The ideal triangles that exist on the hyperbolic plane have a thickness of log(1 + 2) 

As a point of comparison, R 2 calculated using the Euclidean metric is not hyperbolic for any value of. In point of fact, the 

geodesic triangle with the vertices (0,0), (n,0), and (0,n) can only be considered-thin if the value of is less than n/2. Consider 

the point (n/2,n/2) if you want to understand this clearly. The following is a list of common questions that, when attempted 

to be answered using actions on hyperbolic spaces, often fall into one of the following categories: 

1. Algorithmic: When do two words in a generating set represent the same element or conjugate elements? 

2. Local-to-global: Are paths in the Cayley graph that are locally geodesics globally geodesics as well? 

3. Rigidity: If two groups have geometrically similar Cayley graphs, are the groups algebraically similar? Can we 

characterize homomorphisms to and from the group? 

We will discuss in turn geometric actions and other types of actions on δ-hyperbolic spaces. 

Geometric actions on δ-hyperbolic spaces: A metric space is said to be appropriate if closed balls can be compressed inside 

it. If a group G works geometrically on a proper-hyperbolic space 2, then the group is said to be hyperbolic. The term 

”hyperbolic group” refers to both free groups and the basic groups of closed hyperbolic manifolds. Given that we began this 
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section by pointing out that there are not always beneficial tree actions, it is reasonable to inquire as to the frequency with 

which hyperbolic groups occur. Gromov developed a model of a ”random finitely presented group” in Chapter 9 of Gro93. 

This model contains a parameter known as the ”density” that ranges from 0 to 1 and governs the number of relators in relation 

to the number of generators. Gromov demonstrated that a random group is both infinite and hyperbolic when d is less than 

half. (For those who are wondering, a random group has a maximum of two components whenever d is greater than 1/2). As 

a result, it is accurate to assert that hyperbolic groups are quite widespread. One definition of a hyperbolic group is identical 

to the statement that the group G is finitely generated and that the Cayley graph (G, S) is hyperbolic for every finite generating 

set that is a member of the group G. In addition, the word ”some” in the above statement might be substituted by the word 

”every.” There are several in-depth studies that are centered on hyperbolic groups, in addition to Gromov’s original article, 

which explains how these groups meet a lengthy number of important features. See, for example, the comments that were 

edited by Short and published in ABC + 91; the chapters written by Bridson and Haefliger and published in BH99; and the 

references that are included within these works. from hyperbolic groups are characterized by a geometric condition (in many 

different ways that are equal to one another), academics have pondered from the beginning of their existence whether or not 

there is an algebraic characterisation. Locating algebraic roadblocks is not all that difficult. The centralizer of an infinite-

order element is often one of the first to be encountered. If G is a hyperbolic group and the subgroup g of G has an infinite 

order, then the cyclic subgroup hgi, which was produced by g, will have a finite index in the centralizer of g, which is CG(g). 

To refresh your memory, the centralizer of g is the subgroup of G that consists of elements h that belong to G and has the 

equation hg = gh. The concept that underlies this fact provides a clear illustration of a common geometric argument by making 

use of the thin triangle condition. Assuming that hg = gh, we should look at the four vertices 1G, g k, hgk, and h in the Cayley 

graph (G, S) for a value of k that is very big. It may be deduced from the fact that hgk = g kh that these four locations are 

located on a rectangle. A geodesic [1G, gk] and its translation by h, the geodesic [h, hgk], are responsible for the formation 

of the horizontal sides. Use a geodesic with the coordinates [1G, h] and its translate by g k to get the vertical sides. Because 

of the commutativity assumption, the translate by g k yields a geodesic that goes from g k to g kh. However, the latter point 

is equivalent to hgk. Look at figure 12 here. 

 

Figure 12. A commuting rectangle in Γ(G,S) 

Other actions on δ-hyperbolic spaces: Numerous natural groups have subgroups that are isomorphic to Z 2, and as a result, 

these natural groups cannot be hyperbolic. Is it possible for us to continue to examine these groupings using negative 
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curvature? Let’s take an example of an important group in low-dimensional topology while relaxing the constraint of a 

geometric action and the necessity of a correct metric space. The group of orientation-preserving homeomorphisms of modulo 

isotopy is the mapping class group MCG() of an orientable surface, which may or may not have a border. That is to say, two 

homeomorphisms of that determine the same mapping class are those that can be continuously deformed into one another in 

such a manner that every intermediate map along the way is likewise a homeomorphism. When has a border that is not empty, 

it is necessary for the homeomorphisms and the isotopies to have the same identity on each component of the boundary. In 

order to make this debate more manageable, let’s just assume that is compact. The study of 3-manifolds, algebraic geometry, 

cryptography, symplectic geometry, dynamics, and configuration spaces all make use of this group. It is not difficult to locate 

subgroups in most mapping class groups that are isomorphic to Z 2 by making use of homeomorphisms that are supported 

on disjoint subsurfaces in. As a result, the MCG() function is not hyperbolic in general. 

The mapping class group has an effect on the graph of the curve C(). A simple closed curve is an embedding of the circle S 1 

that does not include within itself either a disk nor an annulus (the latter only arises when has a border). The curve graph is 

the graph whose vertex set is the set of isotopy classes of simple closed curves. Two such curves, [c0] and [c1], are linked by 

an edge if they have representations that do not have a disjoint relationship with one another. Figure 13 displays many curves 

on, each of which is accompanied by the subgraph of C() that corresponds to it. When a mapping class [f] is applied to a 

vertex [c] in the curve graph, the result is that the simple closed curve is transferred to the vertex’s image, as shown by the 

equation [f] [c] = [f(c)]. Because homeomorphisms take disjoint curves and transform them into other disjoint curves, this 

also applies to an operation on C(). 

Any two non-isotopic simple closed curves will inevitably cross when the genus of is equal to 1, which is the case when is a 

torus S 1 S 1. Because of this, the definition given above will produce a graph that does not include any edges. In this 

particular instance, the definition is modified slightly such that [c0] and [c1] are considered to be united by an edge if they 

have representatives that overlap once. Let’s take a more in-depth look at this graph of a curve. Isotopic to a curve that wraps 

p times around the first S 1 factor is any simple closed curve on the torus in its simplest form. 

 



International Journal of Mathematical Theory and Applications 

Vol 1, Issue 1 2025  

 

33  
Mathlogix publications  

 

Figure 13. A portion of the curve graph for a genus 2 surface 

and q iterations revolving around the second S 1 factor in a context in which p and q are approximately prime. Since it makes 

no difference either way the vector is oriented, we may safely assume that q is positive. To put it another way, isotopy classes 

of simple closed curves on the torus are parameterized by the set of rational numbers p q coupled with an extra element 1 0. 

In addition, the expression ”ps qr” represents the number of times that the simple closed curves p and q and r and s cross. 

Does this ring a bell? Yes, you read it correctly: the Farey graph is the curve graph of the torus! In point of fact, the mapping 

class group of the torus is isomorphic to SL(2,Z), meaning that both actions are equivalent to one another. The influence of 

SL(2,Z) on the Farey graph is a good illustration of some of the most important characteristics of C() as well as the effect that 

MCG() has on C(). First, we found that the curve graph has a hyperbolic shape, similar to that of the Farey graph. This 

astounding truth was first shown by Masur and Minsky [MM99], however it has subsequently been disproven on several 

occasions. (Hennsel, Przytycki, and Webb provided the most accurate estimate of when they demonstrated that is less than 

17 [HPW15]). It is hard to emphasize the significance of this finding when it comes to the investigation of the mapping class 

group, the geometry of 3-manifolds, and geometric group theory in general. Second, the discontinuity in the action is not 

executed correctly. In point of fact, there is no limit to the vertex stabilizers. However, this is not a flaw but rather a benefit! 

Homeomorphisms are exactly what they sound like when they fix a straightforward closed curve like c. 

2. Conclusion 

It is our hope that the material offered here has helped you better appreciate how a group's algebraic structure and properties 

may be impacted by the topology and geometry of the space they operate on. Geometric group analysis is a rapidly developing 

field of research. This is partly because the discipline generates a large number of issues concerning the geometry of finitely 

formed groups, but it has also gained more attention because of its relevance to other areas of mathematics. In other words, 

one factor contributing to the increase in interest is the quantity of questions the topic generates. This argument is dramatically 

illustrated by the recent confirmation of the Virtual Haken Conjecture in hyperbolic geometry. This was shown by Agol 

[Ago13] using tools created by Scott, Sageev, Wise, and others and taken from geometric group theory. I strongly advise 

reading Bestvina's review article [Bes14] for a thorough examination of this connection. The study of geometric groups has 

several aspects, and hyperbolicity is one of them. Geometric group theory has subfields that draw on ideas and techniques 

from topology (dimension, fractals), dynamics (entropy, topological Markov chains), geometry (isoperimetric functions, Lie 

theory), analysis (L p-spaces, C and von Neumann algebras), and algebra (algebraic geometry, homological algebra). The 

books listed below are arranged by the year of their first publication for anyone who would want to learn more about 

geometric group theory. 
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